Advertisements
Advertisements
प्रश्न
If the letters of the word 'MISSISSIPPI' are written down at random in a row, what is the probability that four S's come together.
उत्तर
There are 11 letters in the word ‘MISSISSIPPI’ which can be arranged in 11! ways.
Number of the letter S = 4
Let us consider the four S's in the given word as one letter.
So, when the four letters are clubbed together, we have (SSSS) MIIIPPI. We can arrange eight letters in a row in 8! ways.
Also, the four S's can be arranges in 4! ways.
Hence, required probability = \[\frac{8! \times 4!}{11!} = \frac{8! \times 4 \times 3 \times 2}{11 \times 10 \times 9 \times 8!} = \frac{4 \times 3 \times 2}{11 \times 10 \times 9} = \frac{4}{165}\]
APPEARS IN
संबंधित प्रश्न
Describe the sample space for the indicated experiment: A coin is tossed three times.
2 boys and 2 girls are in Room X, and 1 boy and 3 girls in Room Y. Specify the sample space for the experiment in which a room is selected and then a person.
One die of red colour, one of white colour and one of blue colour are placed in a bag. One die is selected at random and rolled, its colour and the number on its uppermost face is noted. Describe the sample space.
An experiment consists of recording boy-girl composition of families with 2 children.
(i) What is the sample space if we are interested in knowing whether it is a boy or girl in the order of their births?
(ii) What is the sample space if we are interested in the number of girls in the family?
A box contains 1 red and 3 identical white balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
The numbers 1, 2, 3 and 4 are written separately on four slips of paper. The slips are put in a box and mixed thoroughly. A person draws two slips from the box, one after the other, without replacement. Describe the sample space for the experiment.
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment?
If a coin is tossed two times, describe the sample space associated to this experiment.
If a coin is tossed three times (or three coins are tossed together), then describe the sample space for this experiment.
Write the sample space for the experiment of tossing a coin four times.
A coin is tossed and then a die is thrown. Describe the sample space for this experiment.
A coin is tossed twice. If the second throw results in a tail, a die is thrown. Describe the sample space for this experiment.
A bag contains one white and one red ball. A ball is drawn from the bag. If the ball drawn is white it is replaced in the bag and again a ball is drawn. Otherwise, a die is tossed. Write the sample space for this experiment.
A coin is tossed. Find the total number of elementary events and also the total number events associated with the random experiment.
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(i) Which pairs of events are mutually exclusive?
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(ii) Which events are elementary events?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is spade or an ace
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is neither an ace nor a king
In shuffling a pack of 52 playing cards, four are accidently dropped; find the chance that the missing cards should be one from each suit.
Tickets numbered from 1 to 20 are mixed up together and then a ticket is drawn at random. What is the probability that the ticket has a number which is a multiple of 3 or 7?
There are four men and six women on the city councils. If one council member is selected for a committee at random, how likely is that it is a women?
The letters of the word 'FORTUNATES' are arranged at random in a row. What is the chance that the two 'T' come together.
A committee of two persons is selected from two men and two women. What is the probability that the committee will have one man?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is odd?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is divisible by 5?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has all boys?
In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either any one or both kinds of sets?
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
List the composition of the event A ∪ B, and calculate P(A ∪ B) by addting the probabilities of elementary events.
What is the probability that the 13th days of a randomly chosen month is Friday?
Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral.
A bag contains 3 red, 4 white and 5 blue balls. All balls are different. Two balls are drawn at random. The probability that they are of different colour is
If the probability for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is
Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.
A bag contains 20 tickets numbered 1 to 20. Two tickets are drawn at random. The probability that both the numbers on the ticket are prime is ______.
Two boxes are containing 20 balls each and each ball is either black or white. The total number of black ball in the two boxes is different from the total number of white balls. One ball is drawn at random from each box and the probability that both are white is 0.21 and the probability that both are black is k, then `(100"k")/13` is equal to ______.
If 10 different balls are to be placed in 4 distinct boxes at random, then the probability that two of these boxes contain exactly 2 and 3 balls is ______.
Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is ______.