Advertisements
Advertisements
प्रश्न
Describe the sample space for the indicated experiment: A coin is tossed three times.
उत्तर
A coin has two faces: head (H) and tail (T).
When a coin is tossed three times, the total number of possible outcomes is 23 = 8
Thus, when a coin is tossed three times, the sample space is given by:
S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
APPEARS IN
संबंधित प्रश्न
2 boys and 2 girls are in Room X, and 1 boy and 3 girls in Room Y. Specify the sample space for the experiment in which a room is selected and then a person.
An experiment consists of rolling a die and then tossing a coin once if the number on the die is even. If the number on the die is odd, the coin is tossed twice. Write the sample space for this experiment.
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment?
If a coin is tossed two times, describe the sample space associated to this experiment.
A bag contains one white and one red ball. A ball is drawn from the bag. If the ball drawn is white it is replaced in the bag and again a ball is drawn. Otherwise, a die is tossed. Write the sample space for this experiment.
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(ii) Which events are elementary events?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is black and a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a jack, queen or a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is neither an ace nor a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not a diamond card
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a black card
In shuffling a pack of 52 playing cards, four are accidently dropped; find the chance that the missing cards should be one from each suit.
A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that both the balls are of the same colour.
A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that one is red
There are four men and six women on the city councils. If one council member is selected for a committee at random, how likely is that it is a women?
A committee of two persons is selected from two men and two women. What is the probability that the committee will have one man?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is greater than 12?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has all girls?
A bag contains tickets numbered from 1 to 20. Two tickets are drawn. Find the probability that on one there is a prime number and on the other there is a multiple of 4.as
Two cards are drawn from a well shuffled pack of 52 cards. Find the probability that either both are black or both are kings.
An integer is chosen at random from first 200 positive integers. Find the probability that the integer is divisible by 6 or 8.
In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either any one or both kinds of sets?
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Using the addition law of probability, find P(A ∪ B).
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Calculate \[P\left( \bar{ B} \right)\] from P(B), also calculate \[P\left( \bar{ B } \right)\] directly from the elementary events of \[\bar{ B } \] .
n (≥ 3) persons are sitting in a row. Two of them are selected. Write the probability that they are together.
A single letter is selected at random from the word 'PROBABILITY'. What is the probability that it is a vowel?
What is the probability that a leap year will have 53 Fridays or 53 Saturdays?
What is the probability that the 13th days of a randomly chosen month is Friday?
Two dice are thrown simultaneously. The probability of obtaining a total score of 5 is
The probabilities of happening of two events A and B are 0.25 and 0.50 respectively. If the probability of happening of A and B together is 0.14, then probability that neither Anor B happens is
An ordinary deck of cards contains 52 cards divided into four suits. The red suits are diamonds and hearts and black suits are clubs and spades. The cards J, Q, and K are called face cards. Suppose we pick one card from the deck at random. What is the event that the chosen card is a black face card?
Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral?
Two boxes are containing 20 balls each and each ball is either black or white. The total number of black ball in the two boxes is different from the total number of white balls. One ball is drawn at random from each box and the probability that both are white is 0.21 and the probability that both are black is k, then `(100"k")/13` is equal to ______.