Advertisements
Advertisements
प्रश्न
In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either any one or both kinds of sets?
उत्तर
Let A be the event that a family owns a colour television set and B be the event that a family owns a black and white television set.
So, A ∩ B is the event that a family owns both a colour television set and a black and white television set.
∴ P(A) = 0.87, P(B) = 0.36 and P(A ∩ B) = 0.30 (Given)
Now,
P(a family owns either any one or both kinds of television sets)
= P(A ∪ B)
= P(A) + P(B) − P(A ∩ B)
= 0.87 + 0.36 − 0.30
= 0.93
Hence, the required probability is 0.93.
APPEARS IN
संबंधित प्रश्न
Describe the sample space for the indicated experiment: A die is thrown two times.
Describe the sample space for the indicated experiment: A coin is tossed and then a die is rolled only in case a head is shown on the coin.
An experiment consists of recording boy-girl composition of families with 2 children.
(i) What is the sample space if we are interested in knowing whether it is a boy or girl in the order of their births?
(ii) What is the sample space if we are interested in the number of girls in the family?
A box contains 1 red and 3 identical white balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
Two dice are thrown. Describe the sample space of this experiment.
A coin is tossed and then a die is rolled only in case a head is shown on the coin. Describe the sample space for this experiment.
An experiment consists of tossing a coin and then tossing it second time if head occurs. If a tail occurs on the first toss, then a die is tossed once. Find the sample space.
A coin is tossed repeatedly until a tail comes up for the first time. Write the sample space for this experiment.
A pair of dice is rolled. If the outcome is a doublet, a coin is tossed. Determine the total number of elementary events associated to this experiment.
A bag contains 4 identical red balls and 3 identical black balls. The experiment consists of drawing one ball, then putting it into the bag and again drawing a ball. What are the possible outcomes of the experiment?
There are three coloured dice of red, white and black colour. These dice are placed in a bag. One die is drawn at random from the bag and rolled its colour and the number on its uppermost face is noted. Describe the sample space for this experiment.
List all events associated with the random experiment of tossing of two coins. How many of them are elementary events.
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not an ace
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not a black card.
In shuffling a pack of 52 playing cards, four are accidently dropped; find the chance that the missing cards should be one from each suit.
A bag contains 6 red, 4 white and 8 blue balls. if three balls are drawn at random, find the probability that one is red, one is white and one is blue.
A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that one ball is black and the other red
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain:
(i) just one ace
A committee of two persons is selected from two men and two women. What is the probability that the committee will have one man?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is divisible by 5?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has all boys?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has at most one girl?
A bag contains tickets numbered from 1 to 20. Two tickets are drawn. Find the probability that on one there is a prime number and on the other there is a multiple of 4.as
An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that one ball is red and the other is black
Two cards are drawn from a well shuffled pack of 52 cards. Find the probability that either both are black or both are kings.
Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.
What is the probability that a leap year will have 53 Fridays or 53 Saturdays?
If the letters of the word 'MISSISSIPPI' are written down at random in a row, what is the probability that four S's come together.
One card is drawn from a pack of 52 cards. The probability that it is the card of a king or spade is
Two dice are thrown together. The probability that at least one will show its digit greater than 3 is
Four persons are selected at random out of 3 men, 2 women and 4 children. The probability that there are exactly 2 children in the selection is
Six boys and six girls sit in a row randomly. The probability that all girls sit together is
A pack of cards contains 4 aces, 4 kings, 4 queens and 4 jacks. Two cards are drawn at random. The probability that at least one of them is an ace is
If the probability for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is
An ordinary deck of cards contains 52 cards divided into four suits. The red suits are diamonds and hearts and black suits are clubs and spades. The cards J, Q, and K are called face cards. Suppose we pick one card from the deck at random. What is the event that the chosen card is a black face card?
An urn contains nine balls of which three are red, four are blue and two are green. Three balls are drawn at random without replacement from the urn. The probability that the three balls have different colours is ______.