हिंदी

A Bag Contains 6 Red, 4 White and 8 Blue Balls. If Three Balls Are Drawn at Random, Find the Probability that One is Red, One is White and One is Blue. - Mathematics

Advertisements
Advertisements

प्रश्न

A bag contains 6 red, 4 white and 8 blue balls. if three balls are drawn at random, find the probability that one is red, one is white and one is blue.

 

उत्तर

Total number of balls = 6 + 4 + 8 = 18
Total number of elementary events, n(S) = 18C3
Let E be the event of favourable outcomes.
Here, E = getting one red, one white and one blue ball
So, favourable number of elementary events, n(E) = 6C1 ×4C1 × 8C1
Hence, required probability = \[\frac{n\left( E \right)}{n\left( S \right)} = \frac{^{6}{}{C}_1 \times ^{4}{}{C}_1 \times^{8}{}{C}_1}{^{18}{}{C}_3}\]

\[= \frac{6 \times 4 \times 8}{\frac{18 \times 17 \times 16}{3 \times 2}}\]
\[ = \frac{6 \times 4 \times 8}{6 \times 17 \times 8}\]
\[ = \frac{4}{17}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Probability - Exercise 33.3 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 33 Probability
Exercise 33.3 | Q 14 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Describe the sample space for the indicated experiment: A coin is tossed four times.


The numbers 1, 2, 3 and 4 are written separately on four slips of paper. The slips are put in a box and mixed thoroughly. A person draws two slips from the box, one after the other, without replacement. Describe the sample space for the experiment.


A coin is tossed. If it shows a tail, we draw a ball from a box which contains 2 red and 3 black balls. If it shows head, we throw a die. Find the sample space for this experiment.


A die is thrown repeatedly until a six comes up. What is the sample space for this experiment?


If a coin is tossed two times, describe the sample space associated to this experiment.

 

A coin is tossed and then a die is thrown. Describe the sample space for this experiment.


A die is thrown repeatedly until a six comes up. What is the sample space for this experiment.

 

Three coins are tossed once. Describe the events associated with this random experiment: 

A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(i) Which pairs of events are mutually exclusive?

 


Three coins are tossed once. Describe the events associated with this random experiment: 

A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.

(iii) Which events are compound events?

 

A card is picked up from a deck of 52 playing cards. 

 What is the event that the chosen card is a black faced card?

 

 


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a jack, queen or a king


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is neither a heart nor a king


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not an ace


A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that one ball is black and the other red


A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that two are blue and one is red


Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?

 

A committee of two persons is selected from two men and two women. What is the probability that the committee will have  no man? 


20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is a multiple of 4?


20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is greater than 12?


A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has  all boys?


A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has  all girls?


A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has 1 boys and 2 girls?


A bag contains tickets numbered from 1 to 20. Two tickets are drawn. Find the probability that  both the tickets have prime numbers on them


An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that one ball is red and the other is black


An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that  one ball is white. 


Two cards are drawn from a well shuffled pack of 52 cards. Find the probability that either both are black or both are kings.


Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.


A sample space consists of 9 elementary events E1E2E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1E5E8}, B = {E2E5E8, E9}   

 Compute P(A)P(B) and P(A ∩ B).


A single letter is selected at random from the word 'PROBABILITY'. What is the probability that it is a vowel?


The probabilities of happening of two events A and B are 0.25 and 0.50 respectively. If the probability of happening of A and B together is 0.14, then probability that neither Anor B happens is


A die is rolled, then the probability that a number 1 or 6 may appear is


Three digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?


An ordinary deck of cards contains 52 cards divided into four suits. The red suits are diamonds and hearts and black suits are clubs and spades. The cards J, Q, and K are called face cards. Suppose we pick one card from the deck at random. What is the event that the chosen card is a black face card?


Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral?


Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.


The probability that a randomly chosen 2 × 2 matrix with all the entries from the set of first 10 primes, is singular, is equal to ______.


Two boxes are containing 20 balls each and each ball is either black or white. The total number of black ball in the two boxes is different from the total number of white balls. One ball is drawn at random from each box and the probability that both are white is 0.21 and the probability that both are black is k, then `(100"k")/13` is equal to ______.


Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×