Advertisements
Advertisements
प्रश्न
A bag contains 6 red, 4 white and 8 blue balls. if three balls are drawn at random, find the probability that one is red, one is white and one is blue.
उत्तर
Total number of balls = 6 + 4 + 8 = 18
Total number of elementary events, n(S) = 18C3
Let E be the event of favourable outcomes.
Here, E = getting one red, one white and one blue ball
So, favourable number of elementary events, n(E) = 6C1 ×4C1 × 8C1
Hence, required probability = \[\frac{n\left( E \right)}{n\left( S \right)} = \frac{^{6}{}{C}_1 \times ^{4}{}{C}_1 \times^{8}{}{C}_1}{^{18}{}{C}_3}\]
\[= \frac{6 \times 4 \times 8}{\frac{18 \times 17 \times 16}{3 \times 2}}\]
\[ = \frac{6 \times 4 \times 8}{6 \times 17 \times 8}\]
\[ = \frac{4}{17}\]
APPEARS IN
संबंधित प्रश्न
Describe the sample space for the indicated experiment: A coin is tossed three times.
Describe the sample space for the indicated experiment: A die is thrown two times.
A coin is tossed once. Write its sample space
A coin is tossed and then a die is rolled only in case a head is shown on the coin. Describe the sample space for this experiment.
A coin is tossed twice. If the second throw results in a tail, a die is thrown. Describe the sample space for this experiment.
An experiment consists of tossing a coin and then tossing it second time if head occurs. If a tail occurs on the first toss, then a die is tossed once. Find the sample space.
A coin is tossed. If it shows tail, we draw a ball from a box which contains 2 red 3 black balls; if it shows head, we throw a die. Find the sample space of this experiment.
A coin is tossed twice. If the second draw results in a head, a die is rolled. Write the sample space for this experiment.
A bag contains one white and one red ball. A ball is drawn from the bag. If the ball drawn is white it is replaced in the bag and again a ball is drawn. Otherwise, a die is tossed. Write the sample space for this experiment.
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment.
List all events associated with the random experiment of tossing of two coins. How many of them are elementary events.
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is black and a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not a diamond card
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not an ace
A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that both the balls are white
A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that one is red
Find the probability that in a random arrangement of the letters of the word 'SOCIAL' vowels come together.
The letters of the word 'FORTUNATES' are arranged at random in a row. What is the chance that the two 'T' come together.
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is a multiple of 4?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is not a multiple of 4?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is divisible by 5?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has at most one girl?
An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that both the balls are red .
An integer is chosen at random from first 200 positive integers. Find the probability that the integer is divisible by 6 or 8.
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Compute P(A), P(B) and P(A ∩ B).
Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral.
If A and B are two independent events such that \[P (A \cap B) = \frac{1}{6}\text{ and } P (A \cap B) = \frac{1}{3},\] then write the values of P (A) and P (B).
One card is drawn from a pack of 52 cards. The probability that it is the card of a king or spade is
Two dice are thrown simultaneously. The probability of obtaining a total score of 5 is
Two dice are thrown simultaneously. The probability of obtaining total score of seven is
A card is drawn at random from a pack of 100 cards numbered 1 to 100. The probability of drawing a number which is a square is
What is the probability that a randomly chosen two-digit positive integer is a multiple of 3?
Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.
A single letter is selected at random from the word 'PROBABILITY'. The probability that it is a vowel is ______.