Advertisements
Advertisements
प्रश्न
A coin is tossed twice. If the second throw results in a tail, a die is thrown. Describe the sample space for this experiment.
उत्तर
When a coin is tossed twice, the possible outcomes are HH, HT, TH, TT.
The second throw results in a head in HH, TH.
The second throw results in a tail in HT, TT.
Now, a dice is thrown.
The possible outcomes on a dice are 1, 2, 3, 4, 5 and 6.
The sample space is given by
S = { HH, TH, (HT, 1), (HT, 2), (HT, 3), (HT, 4), (HT, 5), (HT, 6), (TT, 1), (TT, 2), (TT, 3) (TT, 4), (TT, 5), (TT 6)}.
∴ The total number of elements of the sample space is 14.
APPEARS IN
संबंधित प्रश्न
Describe the sample space for the indicated experiment: A coin is tossed and then a die is rolled only in case a head is shown on the coin.
A box contains 1 red and 3 identical white balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
Suppose 3 bulbs are selected at random from a lot. Each bulb is tested and classified as defective (D) or non-defective (N). Write the sample space of this experiment?
Write the sample space for the experiment of tossing a coin four times.
A coin is tossed and then a die is rolled only in case a head is shown on the coin. Describe the sample space for this experiment.
A pair of dice is rolled. If the outcome is a doublet, a coin is tossed. Determine the total number of elementary events associated to this experiment.
A coin is tossed twice. If the second draw results in a head, a die is rolled. Write the sample space for this experiment.
There are three coloured dice of red, white and black colour. These dice are placed in a bag. One die is drawn at random from the bag and rolled its colour and the number on its uppermost face is noted. Describe the sample space for this experiment.
A box contains 1 white and 3 identical black balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment.
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(ii) Which events are elementary events?
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(iii) Which events are compound events?
A card is picked up from a deck of 52 playing cards.
What is the event that the chosen card is a black faced card?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is black and a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is spade or an ace
In shuffling a pack of 52 playing cards, four are accidently dropped; find the chance that the missing cards should be one from each suit.
A bag contains 6 red, 4 white and 8 blue balls. if three balls are drawn at random, find the probability that one is red, one is white and one is blue.
A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that both the balls are of the same colour.
A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that one is red
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain:
(i) just one ace
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?
The letters of the word' CLIFTON' are placed at random in a row. What is the chance that two vowels come together?
Find the probability that in a random arrangement of the letters of the word 'UNIVERSITY', the two I's do not come together.
A committee of two persons is selected from two men and two women. What is the probability that the committee will have one man?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is a multiple of 4?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is greater than 12?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is divisible by 5?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is not a multiple of 6?
Five cards are drawn from a well-shuffled pack of 52 cards. Find the probability that all the five cards are hearts.
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Using the addition law of probability, find P(A ∪ B).
A single letter is selected at random from the word 'PROBABILITY'. What is the probability that it is a vowel?
One card is drawn from a pack of 52 cards. The probability that it is the card of a king or spade is
Two dice are thrown together. The probability that at least one will show its digit greater than 3 is
Two dice are thrown simultaneously. The probability of obtaining a total score of 5 is
A card is drawn at random from a pack of 100 cards numbered 1 to 100. The probability of drawing a number which is a square is
A typical PIN (personal identification number) is a sequence of any four symbols chosen from the 26 letters in the alphabet and the ten digits. If all PINs are equally likely, what is the probability that a randomly chosen PIN contains a repeated symbol?
Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral?
The probability that a randomly chosen 2 × 2 matrix with all the entries from the set of first 10 primes, is singular, is equal to ______.
If 10 different balls are to be placed in 4 distinct boxes at random, then the probability that two of these boxes contain exactly 2 and 3 balls is ______.