मराठी

Two Dice Are Thrown Together. the Probability that at Least One Will Show Its Digit Greater than 3 is (A) 1/4 (B) 3/4 (C) 1/2 (D) 1/8 - Mathematics

Advertisements
Advertisements

प्रश्न

Two dice are thrown together. The probability that at least one will show its digit greater than 3 is

पर्याय

  • 1/4

  •  3/4

  •  1/2

  • 1/8

     
MCQ

उत्तर

 3/4

When two dice are thrown, there are (6 × 6) = 36 outcomes.
The set of all these outcomes is the sample space, given by
S = (1, 1) , (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)
      (2, 1) , (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)
      (3, 1) , (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
      (4, 1) , (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)
      (5, 1) , (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)
      (6, 1) , (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)
i.e. n(S) = 36
Let E be the event of getting at least one digit greater than 3.
Then E = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6), (4, 1) , (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
          (5, 1) , (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1) , (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) }
∴  n(E) = 27
Hence, required probability = \[\frac{27}{36} = \frac{3}{4}\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Probability - Exercise 33.6 [पृष्ठ ७१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 33 Probability
Exercise 33.6 | Q 2 | पृष्ठ ७१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Describe the sample space for the indicated experiment: A coin is tossed four times.


Describe the sample space for the indicated experiment: A coin is tossed and then a die is rolled only in case a head is shown on the coin.


A box contains 1 red and 3 identical white balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.


A coin is tossed. If the out come is a head, a die is thrown. If the die shows up an even number, the die is thrown again. What is the sample space for the experiment?


An experiment consists of rolling a die and then tossing a coin once if the number on the die is even. If the number on the die is odd, the coin is tossed twice. Write the sample space for this experiment.


A coin is tossed. If it shows a tail, we draw a ball from a box which contains 2 red and 3 black balls. If it shows head, we throw a die. Find the sample space for this experiment.


A die is thrown repeatedly until a six comes up. What is the sample space for this experiment?


A coin is tossed once. Write its sample space

 

A coin is tossed twice. If the second throw results in a tail, a die is thrown. Describe the sample space for this experiment.


A coin is tossed twice. If the second draw results in a head, a die is rolled. Write the sample space for this experiment.


In a random sampling three items are selected from a lot. Each item is tested and classified as defective (D) or non-defective (N). Write the sample space of this experiment.


An experiment consists of boy-girl composition of families with 2 children. 

What is the sample space if we are interested in knowing whether it is a boy or girl in the order of their births?

 


There are three coloured dice of red, white and black colour. These dice are placed in a bag. One die is drawn at random from the bag and rolled its colour and the number on its uppermost face is noted. Describe the sample space for this experiment.

 

2 boys and 2 girls are in room P and 1 boy 3 girls are in room Q. Write the sample space for the experiment in which a room is selected and then a person.

 

A bag contains one white and one red ball. A ball is drawn from the bag. If the ball drawn is white it is replaced in the bag and again a ball is drawn. Otherwise, a die is tossed. Write the sample space for this experiment.


Three coins are tossed once. Describe the events associated with this random experiment: 

A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(i) Which pairs of events are mutually exclusive?

 


Three coins are tossed once. Describe the events associated with this random experiment: 

A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.

(ii) Which events are elementary events?


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a jack, queen or a king


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not an ace


A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that two are blue and one is red


A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that one is red

 

Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?

 

20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is odd?


20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is greater than 12?


20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is not a multiple of 6?


Five cards are drawn from a well-shuffled pack of 52 cards. Find the probability that all the five cards are hearts.


A sample space consists of 9 elementary events E1E2E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1E5E8}, B = {E2E5E8, E9}   

 Using the addition law of probability, find P(A ∪ B).


A sample space consists of 9 elementary events E1E2E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1E5E8}, B = {E2E5E8, E9}   

 List the composition of the event A ∪ B, and calculate P(A ∪ B) by addting the probabilities of elementary events.


A single letter is selected at random from the word 'PROBABILITY'. What is the probability that it is a vowel?


If A and B are two independent events such that \[P (A \cap B) = \frac{1}{6}\text{ and }  P (A \cap B) = \frac{1}{3},\]  then write the values of P (A) and P (B).

 
 

One card is drawn from a pack of 52 cards. The probability that it is the card of a king or spade is


A bag contains 3 red, 4 white and 5 blue balls. All balls are different. Two balls are drawn at random. The probability that they are of different colour is


The probabilities of happening of two events A and B are 0.25 and 0.50 respectively. If the probability of happening of A and B together is 0.14, then probability that neither Anor B happens is


A pack of cards contains 4 aces, 4 kings, 4 queens and 4 jacks. Two cards are drawn at random. The probability that at least one of them is an ace is


Three digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?


An ordinary deck of cards contains 52 cards divided into four suits. The red suits are diamonds and hearts and black suits are clubs and spades. The cards J, Q, and K are called face cards. Suppose we pick one card from the deck at random. What is the event that the chosen card is a black face card?


A single letter is selected at random from the word 'PROBABILITY'. The probability that it is a vowel is ______.


If 10 different balls are to be placed in 4 distinct boxes at random, then the probability that two of these boxes contain exactly 2 and 3 balls is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×