Advertisements
Advertisements
प्रश्न
Three digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?
पर्याय
- \[\frac{1}{16}\]
- \[\frac{16}{25}\]
- \[\frac{1}{645}\]
- \[\frac{1}{25}\]
उत्तर
The given digits are 0, 2, 4, 6, 8.
____ | ____ | ____ |
Hundreds | Tens | Ones |
Total number of 3 digit numbers formed using the given digits = 4 × 5 × 5 = 100
The three digit numbers formed using given digits that have the same digits are 222, 444, 666 and 888.
Number of 3 digit numbers that have the same digits = 4
∴ P(three digit number formed has the same digits) = \[\frac{\text{ Number of 3 digit numbers that have the same digits} }{\text{ Total number of 3 digit numbers formed using the given digits} } = \frac{4}{100} = \frac{1}{25}\]
APPEARS IN
संबंधित प्रश्न
2 boys and 2 girls are in Room X, and 1 boy and 3 girls in Room Y. Specify the sample space for the experiment in which a room is selected and then a person.
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment?
If a coin is tossed three times (or three coins are tossed together), then describe the sample space for this experiment.
Write the sample space for the experiment of tossing a coin four times.
What is the total number of elementary events associated to the random experiment of throwing three dice together?
A coin is tossed and then a die is thrown. Describe the sample space for this experiment.
A box contains 1 red and 3 black balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
A coin is tossed twice. If the second draw results in a head, a die is rolled. Write the sample space for this experiment.
A box contains 1 white and 3 identical black balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
List all events associated with the random experiment of tossing of two coins. How many of them are elementary events.
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(i) Which pairs of events are mutually exclusive?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a black card
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not an ace
A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that both the balls are white
A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that two are blue and one is red
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain:
(i) just one ace
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?
There are four men and six women on the city councils. If one council member is selected for a committee at random, how likely is that it is a women?
Find the probability that in a random arrangement of the letters of the word 'SOCIAL' vowels come together.
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is a multiple of 4?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is odd?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has all boys?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has all girls?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has at most one girl?
Two cards are drawn from a well shuffled pack of 52 cards. Find the probability that either both are black or both are kings.
An integer is chosen at random from first 200 positive integers. Find the probability that the integer is divisible by 6 or 8.
Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Calculate \[P\left( \bar{ B} \right)\] from P(B), also calculate \[P\left( \bar{ B } \right)\] directly from the elementary events of \[\bar{ B } \] .
Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral.
One card is drawn from a pack of 52 cards. The probability that it is the card of a king or spade is
Two dice are thrown together. The probability that at least one will show its digit greater than 3 is
Six boys and six girls sit in a row randomly. The probability that all girls sit together is
An ordinary deck of cards contains 52 cards divided into four suits. The red suits are diamonds and hearts and black suits are clubs and spades. The cards J, Q, and K are called face cards. Suppose we pick one card from the deck at random. What is the sample space of the experiment?
If 10 different balls are to be placed in 4 distinct boxes at random, then the probability that two of these boxes contain exactly 2 and 3 balls is ______.
Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is ______.