मराठी

If the Probability for a to Fail in an Examination is 0.2 and that for B is 0.3, Then the Probability that Either a Or B Fails is ( A) > 0.5 (B) 0.5 (C) ≤ 0.5 (D) 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If the probability for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is

पर्याय

  •  > 0.5      

  • 0.5       

  •  ≤ 0.5 

  • 0                       

MCQ

उत्तर

Let X and Y be two events given by
X : fails in an examination
Y : fails in an examination
P(A fails) = P(X) = 0.2
P(B fails) = P(Y) = 0.3
Now, P(either or fails) = P(X ∪ Y)
We know that,
P(X ∪ Y) ≤ P(X) + P(Y) = 0.2 + 0.3 = 0.5
⇒ P(X ∪ Y) ≤ 0.5
∴ P(either or fails) ≤ 0.5

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Probability - Exercise 33.6 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 33 Probability
Exercise 33.6 | Q 39 | पृष्ठ ७३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Describe the sample space for the indicated experiment: A coin is tossed four times.


Describe the sample space for the indicated experiment: A coin is tossed and a die is thrown.


Describe the sample space for the indicated experiment: A coin is tossed and then a die is rolled only in case a head is shown on the coin.


The numbers 1, 2, 3 and 4 are written separately on four slips of paper. The slips are put in a box and mixed thoroughly. A person draws two slips from the box, one after the other, without replacement. Describe the sample space for the experiment.


A coin is tossed once. Write its sample space

 

An experiment consists of tossing a coin and then tossing it second time if head occurs. If a tail occurs on the first toss, then a die is tossed once. Find the sample space.

 

An experiment consists of boy-girl composition of families with 2 children. 

What is the sample space if we are interested in the number of boys in a family?

 

There are three coloured dice of red, white and black colour. These dice are placed in a bag. One die is drawn at random from the bag and rolled its colour and the number on its uppermost face is noted. Describe the sample space for this experiment.

 

A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a black king


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a jack, queen or a king


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is spade or an ace


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a diamond card


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not an ace


In shuffling a pack of 52 playing cards, four are accidently dropped; find the chance that the missing cards should be one from each suit.


A bag contains 6 red, 4 white and 8 blue balls. if three balls are drawn at random, find the probability that one is red, one is white and one is blue.

 

A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that one is red

 

Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain:
(i) just one ace


Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?

 

The face cards are removed from a full pack. Out of the remaining 40 cards, 4 are drawn at random. what is the probability that they belong to different suits?


The letters of the word 'FORTUNATES' are arranged at random in a row. What is the chance that the two 'T' come together.


A committee of two persons is selected from two men and two women. What is the probability that the committee will have  two men?


A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has  at least one girl?


A sample space consists of 9 elementary events E1E2E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1E5E8}, B = {E2E5E8, E9}   

 List the composition of the event A ∪ B, and calculate P(A ∪ B) by addting the probabilities of elementary events.


A sample space consists of 9 elementary events E1E2E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1E5E8}, B = {E2E5E8, E9}   

 Calculate \[P\left( \bar{ B} \right)\]  from P(B), also calculate \[P\left( \bar{ B } \right)\]  directly from the elementary events of \[\bar{ B } \] .

 


n (≥ 3) persons are sitting in a row. Two of them are selected. Write the probability that they are together.

 

A single letter is selected at random from the word 'PROBABILITY'. What is the probability that it is a vowel?


Two dice are thrown simultaneously. The probability of obtaining a total score of 5 is


The probability of getting a total of 10 in a single throw of two dices is


An ordinary deck of cards contains 52 cards divided into four suits. The red suits are diamonds and hearts and black suits are clubs and spades. The cards J, Q, and K are called face cards. Suppose we pick one card from the deck at random. What is the sample space of the experiment?


An ordinary deck of cards contains 52 cards divided into four suits. The red suits are diamonds and hearts and black suits are clubs and spades. The cards J, Q, and K are called face cards. Suppose we pick one card from the deck at random. What is the event that the chosen card is a black face card?


A typical PIN (personal identification number) is a sequence of any four symbols chosen from the 26 letters in the alphabet and the ten digits. If all PINs are equally likely, what is the probability that a randomly chosen PIN contains a repeated symbol?


Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral?


A bag contains 20 tickets numbered 1 to 20. Two tickets are drawn at random. The probability that both the numbers on the ticket are prime is ______.


Two boxes are containing 20 balls each and each ball is either black or white. The total number of black ball in the two boxes is different from the total number of white balls. One ball is drawn at random from each box and the probability that both are white is 0.21 and the probability that both are black is k, then `(100"k")/13` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×