मराठी

A Card is Drawn at Random from a Pack of 52 Cards. Find the Probability that the Card Drawn Is:(I) a Black King - Mathematics

Advertisements
Advertisements

प्रश्न

A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a black king

उत्तर

Let S denote the sample space.
Then, n(S) = 52

 Let E1 = event of drawing a black king
    We know that the number of black kings is two: one for spade and one for club.
     i.e. n (E1) = 2

\[\therefore P\left( E_1 \right) = \frac{n\left( E_1 \right)}{n\left( S \right)} = \frac{2}{52} = \frac{1}{26}\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Probability - Exercise 33.3 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 33 Probability
Exercise 33.3 | Q 10.01 | पृष्ठ ४६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Describe the sample space for the indicated experiment: A coin is tossed four times.


2 boys and 2 girls are in Room X, and 1 boy and 3 girls in Room Y. Specify the sample space for the experiment in which a room is selected and then a person.


An experiment consists of rolling a die and then tossing a coin once if the number on the die is even. If the number on the die is odd, the coin is tossed twice. Write the sample space for this experiment.


A die is thrown repeatedly until a six comes up. What is the sample space for this experiment?


If a coin is tossed two times, describe the sample space associated to this experiment.

 

A coin is tossed and then a die is thrown. Describe the sample space for this experiment.


An experiment consists of tossing a coin and then tossing it second time if head occurs. If a tail occurs on the first toss, then a die is tossed once. Find the sample space.

 

A coin is tossed. If it shows tail, we draw a ball from a box which contains 2 red 3 black balls; if it shows head, we throw a die. Find the sample space of this experiment.


A coin is tossed twice. If the second draw results in a head, a die is rolled. Write the sample space for this experiment.


A bag contains one white and one red ball. A ball is drawn from the bag. If the ball drawn is white it is replaced in the bag and again a ball is drawn. Otherwise, a die is tossed. Write the sample space for this experiment.


An experiment consists of rolling a die and then tossing a coin once if the number on the die is even. If the number on the die is odd, the coin is tossed twice. Write the sample space for this experiment.

 

A die is thrown repeatedly until a six comes up. What is the sample space for this experiment.

 

List all events associated with the random experiment of tossing of two coins. How many of them are elementary events.


Three coins are tossed once. Describe the events associated with this random experiment: 

A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.

(ii) Which events are elementary events?


A card is picked up from a deck of 52 playing cards.

What is the sample space of the experiment?


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is either a black card or a king


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is black and a king


A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that both the balls are white


A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that one ball is black and the other red


Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?

 

Two balls are drawn at random from a bag containing 2 white, 3 red, 5 green and 4 black balls, one by one without, replacement. Find the probability that both the balls are of different colours.


20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is  divisible by 5?


An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that one ball is red and the other is black


An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that  one ball is white. 


An integer is chosen at random from first 200 positive integers. Find the probability that the integer is divisible by 6 or 8.


In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either any one or both kinds of sets?  


A sample space consists of 9 elementary events E1E2E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1E5E8}, B = {E2E5E8, E9}   

 Calculate \[P\left( \bar{ B} \right)\]  from P(B), also calculate \[P\left( \bar{ B } \right)\]  directly from the elementary events of \[\bar{ B } \] .

 


A single letter is selected at random from the word 'PROBABILITY'. What is the probability that it is a vowel?


If E and E2 are independent evens, write the value of P \[\left( ( E_1 \cup E_2 ) \cap (E \cap E_2 ) \right)\]

 

The probability of getting a total of 10 in a single throw of two dices is


An ordinary deck of cards contains 52 cards divided into four suits. The red suits are diamonds and hearts and black suits are clubs and spades. The cards J, Q, and K are called face cards. Suppose we pick one card from the deck at random. What is the event that the chosen card is a black face card?


Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral?


A bag contains 20 tickets numbered 1 to 20. Two tickets are drawn at random. The probability that both the numbers on the ticket are prime is ______.


Two boxes are containing 20 balls each and each ball is either black or white. The total number of black ball in the two boxes is different from the total number of white balls. One ball is drawn at random from each box and the probability that both are white is 0.21 and the probability that both are black is k, then `(100"k")/13` is equal to ______.


Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×