Advertisements
Advertisements
प्रश्न
An ordinary deck of cards contains 52 cards divided into four suits. The red suits are diamonds and hearts and black suits are clubs and spades. The cards J, Q, and K are called face cards. Suppose we pick one card from the deck at random. What is the event that the chosen card is a black face card?
उत्तर
Let E be the event that a black face card is chosen.
The outcomes in E are Jack, Queen, King or spades or clubs.
Symbolically:
E = {J, Q, K, of spades and clubs}
or
E = {J♣, Q♣, K♣, J♠, Q♠, K♠}
APPEARS IN
संबंधित प्रश्न
Describe the sample space for the indicated experiment: A coin is tossed and then a die is rolled only in case a head is shown on the coin.
A box contains 1 red and 3 identical white balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
An experiment consists of tossing a coin and then throwing it second time if a head occurs. If a tail occurs on the first toss, then a die is rolled once. Find the sample space.
Suppose 3 bulbs are selected at random from a lot. Each bulb is tested and classified as defective (D) or non-defective (N). Write the sample space of this experiment?
A coin is tossed. If it shows a tail, we draw a ball from a box which contains 2 red and 3 black balls. If it shows head, we throw a die. Find the sample space for this experiment.
A coin is tossed once. Write its sample space
What is the total number of elementary events associated to the random experiment of throwing three dice together?
An experiment consists of tossing a coin and then tossing it second time if head occurs. If a tail occurs on the first toss, then a die is tossed once. Find the sample space.
A coin is tossed repeatedly until a tail comes up for the first time. Write the sample space for this experiment.
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment.
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(ii) Which events are elementary events?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not a diamond card
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not a black card.
A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that one is red
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain:
(i) just one ace
A committee of two persons is selected from two men and two women. What is the probability that the committee will have one man?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is a multiple of 4?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is not a multiple of 6?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has at most one girl?
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
List the composition of the event A ∪ B, and calculate P(A ∪ B) by addting the probabilities of elementary events.
A single letter is selected at random from the word 'PROBABILITY'. What is the probability that it is a vowel?
Three dice are thrown simultaneously. What is the probability of getting 15 as the sum?
The probabilities of happening of two events A and B are 0.25 and 0.50 respectively. If the probability of happening of A and B together is 0.14, then probability that neither Anor B happens is
A die is rolled, then the probability that a number 1 or 6 may appear is
Without repetition of the numbers, four digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is
Three digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?
An urn contains nine balls of which three are red, four are blue and two are green. Three balls are drawn at random without replacement from the urn. The probability that the three balls have different colours is ______.