Advertisements
Advertisements
प्रश्न
Three dice are thrown simultaneously. What is the probability of getting 15 as the sum?
उत्तर
If three dices are thrown simultaneously, then the number of all the possible outcomes are 63 = 216.
∴ Total number of possible outcome = n(S) = 216
Let A be the event of getting a sum of 15 when three dices are thrown simultaneously.
The favourable outcomes are as follows:
A = {(3,6 , 6), (4, 6, 5), (5, 6, 4), (6, 6, 3), (6, 3, 6), (6, 4, 5), (6, 5, 4), (4, 5, 6), (5, 5, 5), (5, 4, 6)}
i.e. number of favourable outcomes = n(A) = 10
Hence, required probability = P (getting a sum of 15) = \[\frac{10}{216}\]
APPEARS IN
संबंधित प्रश्न
Suppose 3 bulbs are selected at random from a lot. Each bulb is tested and classified as defective (D) or non-defective (N). Write the sample space of this experiment?
A coin is tossed. If it shows a tail, we draw a ball from a box which contains 2 red and 3 black balls. If it shows head, we throw a die. Find the sample space for this experiment.
A coin is tossed once. Write its sample space
If a coin is tossed two times, describe the sample space associated to this experiment.
Write the sample space for the experiment of tossing a coin four times.
Two dice are thrown. Describe the sample space of this experiment.
What is the total number of elementary events associated to the random experiment of throwing three dice together?
A coin is tossed and then a die is thrown. Describe the sample space for this experiment.
An experiment consists of tossing a coin and then tossing it second time if head occurs. If a tail occurs on the first toss, then a die is tossed once. Find the sample space.
A box contains 1 red and 3 black balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
In a random sampling three items are selected from a lot. Each item is tested and classified as defective (D) or non-defective (N). Write the sample space of this experiment.
There are three coloured dice of red, white and black colour. These dice are placed in a bag. One die is drawn at random from the bag and rolled its colour and the number on its uppermost face is noted. Describe the sample space for this experiment.
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment.
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(ii) Which events are elementary events?
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(iii) Which events are compound events?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is neither a heart nor a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not an ace
From a deck of 52 cards, four cards are drawn simultaneously, find the chance that they will be the four honours of the same suit.
Find the probability that in a random arrangement of the letters of the word 'SOCIAL' vowels come together.
The letters of the word' CLIFTON' are placed at random in a row. What is the chance that two vowels come together?
A committee of two persons is selected from two men and two women. What is the probability that the committee will have no man?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is not a multiple of 6?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has all boys?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has 1 boys and 2 girls?
An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that one ball is white.
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Compute P(A), P(B) and P(A ∩ B).
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Using the addition law of probability, find P(A ∪ B).
A single letter is selected at random from the word 'PROBABILITY'. What is the probability that it is a vowel?
Two dice are thrown simultaneously. The probability of obtaining a total score of 5 is
6 boys and 6 girls sit in a row at random. The probability that all the girls sit together is
Three digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?
What is the probability that a randomly chosen two-digit positive integer is a multiple of 3?
Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral?
Two boxes are containing 20 balls each and each ball is either black or white. The total number of black ball in the two boxes is different from the total number of white balls. One ball is drawn at random from each box and the probability that both are white is 0.21 and the probability that both are black is k, then `(100"k")/13` is equal to ______.