Advertisements
Advertisements
प्रश्न
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is not a multiple of 6?
उत्तर
Clearly, the sample space is given by S = {1, 2, 3, 4, 5........19, 20}.
i.e. n(S) = 20
Let E6 = event of getting a number which is not a multiple of 6
Then E6' = event of getting a number which is a multiple of 6
E6' = {6, 12, 18}
i.e. n(E6' ) = 3
Now, P(E6') = \[\frac{3}{20}\]
Hence, required probability P(E6) = 1 − P(E6')
= \[1 - \frac{3}{20} = \frac{20 - 3}{20} = \frac{17}{20}\]
APPEARS IN
संबंधित प्रश्न
Describe the sample space for the indicated experiment: A coin is tossed three times.
Describe the sample space for the indicated experiment: A coin is tossed four times.
One die of red colour, one of white colour and one of blue colour are placed in a bag. One die is selected at random and rolled, its colour and the number on its uppermost face is noted. Describe the sample space.
The numbers 1, 2, 3 and 4 are written separately on four slips of paper. The slips are put in a box and mixed thoroughly. A person draws two slips from the box, one after the other, without replacement. Describe the sample space for the experiment.
If a coin is tossed two times, describe the sample space associated to this experiment.
2 boys and 2 girls are in room P and 1 boy 3 girls are in room Q. Write the sample space for the experiment in which a room is selected and then a person.
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment.
List all events associated with the random experiment of tossing of two coins. How many of them are elementary events.
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(iii) Which events are compound events?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is either a black card or a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a jack, queen or a king
In shuffling a pack of 52 playing cards, four are accidently dropped; find the chance that the missing cards should be one from each suit.
From a deck of 52 cards, four cards are drawn simultaneously, find the chance that they will be the four honours of the same suit.
Tickets numbered from 1 to 20 are mixed up together and then a ticket is drawn at random. What is the probability that the ticket has a number which is a multiple of 3 or 7?
A bag contains 6 red, 4 white and 8 blue balls. if three balls are drawn at random, find the probability that one is red, one is white and one is blue.
A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that both the balls are of the same colour.
A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that one is red
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?
Find the probability that in a random arrangement of the letters of the word 'UNIVERSITY', the two I's do not come together.
A committee of two persons is selected from two men and two women. What is the probability that the committee will have no man?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has at least one girl?
Five cards are drawn from a well-shuffled pack of 52 cards. Find the probability that all the five cards are hearts.
An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that one ball is red and the other is black
An integer is chosen at random from first 200 positive integers. Find the probability that the integer is divisible by 6 or 8.
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Calculate \[P\left( \bar{ B} \right)\] from P(B), also calculate \[P\left( \bar{ B } \right)\] directly from the elementary events of \[\bar{ B } \] .
Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral.
If A and B are two independent events such that \[P (A \cap B) = \frac{1}{6}\text{ and } P (A \cap B) = \frac{1}{3},\] then write the values of P (A) and P (B).
One card is drawn from a pack of 52 cards. The probability that it is the card of a king or spade is
Two dice are thrown together. The probability that at least one will show its digit greater than 3 is
Two dice are thrown simultaneously. The probability of obtaining total score of seven is
The probability of getting a total of 10 in a single throw of two dices is
A bag contains 3 red, 4 white and 5 blue balls. All balls are different. Two balls are drawn at random. The probability that they are of different colour is
The probabilities of happening of two events A and B are 0.25 and 0.50 respectively. If the probability of happening of A and B together is 0.14, then probability that neither Anor B happens is
A die is rolled, then the probability that a number 1 or 6 may appear is
Six boys and six girls sit in a row randomly. The probability that all girls sit together is
Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is ______.