Advertisements
Advertisements
प्रश्न
Find the probability that in a random arrangement of the letters of the word 'UNIVERSITY', the two I's do not come together.
उत्तर
Out of the letters in the word ‘UNIVERSITY’, there are two I’s.
Number of permutations = \[\frac{10!}{2}\]
The number of words in which two I’s are never together is given by
total number of words – number of words in which two I’s are together.
\[= \frac{10!}{2} - 9!\]
\[ = \frac{10! - 2 \times 9!}{2}\]
\[ = \frac{9!\left[ 10 - 2 \right]}{2}\]
\[ = \frac{9! \times 8}{2}\]
\[ = 9! \times 4\]
∴ Required probability =\[\frac{9! \times 4}{\frac{10!}{2}} = \frac{9! \times 4 \times 2}{10 \times 9!} = \frac{8}{10} = \frac{4}{5}\]
APPEARS IN
संबंधित प्रश्न
Describe the sample space for the indicated experiment: A coin is tossed three times.
An experiment consists of tossing a coin and then throwing it second time if a head occurs. If a tail occurs on the first toss, then a die is rolled once. Find the sample space.
A coin is tossed once. Write its sample space
Write the sample space for the experiment of tossing a coin four times.
A coin is tossed. If it shows tail, we draw a ball from a box which contains 2 red 3 black balls; if it shows head, we throw a die. Find the sample space of this experiment.
A coin is tossed repeatedly until a tail comes up for the first time. Write the sample space for this experiment.
A bag contains 4 identical red balls and 3 identical black balls. The experiment consists of drawing one ball, then putting it into the bag and again drawing a ball. What are the possible outcomes of the experiment?
An experiment consists of boy-girl composition of families with 2 children.
What is the sample space if we are interested in knowing whether it is a boy or girl in the order of their births?
A box contains 1 white and 3 identical black balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment.
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(i) Which pairs of events are mutually exclusive?
A card is picked up from a deck of 52 playing cards.
What is the event that the chosen card is a black faced card?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a jack, queen or a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is neither a heart nor a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not a black card.
From a deck of 52 cards, four cards are drawn simultaneously, find the chance that they will be the four honours of the same suit.
Tickets numbered from 1 to 20 are mixed up together and then a ticket is drawn at random. What is the probability that the ticket has a number which is a multiple of 3 or 7?
A bag contains 6 red, 4 white and 8 blue balls. if three balls are drawn at random, find the probability that one is red, one is white and one is blue.
A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that both the balls are white
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?
The face cards are removed from a full pack. Out of the remaining 40 cards, 4 are drawn at random. what is the probability that they belong to different suits?
The letters of the word' CLIFTON' are placed at random in a row. What is the chance that two vowels come together?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is a multiple of 4?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is divisible by 5?
Five cards are drawn from a well-shuffled pack of 52 cards. Find the probability that all the five cards are hearts.
Two cards are drawn from a well shuffled pack of 52 cards. Find the probability that either both are black or both are kings.
In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either any one or both kinds of sets?
If A and B are two independent events such that \[P (A \cap B) = \frac{1}{6}\text{ and } P (A \cap B) = \frac{1}{3},\] then write the values of P (A) and P (B).
Six boys and six girls sit in a row randomly. The probability that all girls sit together is
A pack of cards contains 4 aces, 4 kings, 4 queens and 4 jacks. Two cards are drawn at random. The probability that at least one of them is an ace is
Without repetition of the numbers, four digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is
Three digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?
An ordinary deck of cards contains 52 cards divided into four suits. The red suits are diamonds and hearts and black suits are clubs and spades. The cards J, Q, and K are called face cards. Suppose we pick one card from the deck at random. What is the sample space of the experiment?
How many two-digit positive integers are multiples of 3?
Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.
A bag contains 20 tickets numbered 1 to 20. Two tickets are drawn at random. The probability that both the numbers on the ticket are prime is ______.
Two boxes are containing 20 balls each and each ball is either black or white. The total number of black ball in the two boxes is different from the total number of white balls. One ball is drawn at random from each box and the probability that both are white is 0.21 and the probability that both are black is k, then `(100"k")/13` is equal to ______.