Advertisements
Advertisements
प्रश्न
A coin is tossed repeatedly until a tail comes up for the first time. Write the sample space for this experiment.
उत्तर
In this experiment, a tail (T) may come up on the first throw, the second throw, the third throw and so on, until T is obtained.
This process continues indefinitely.
Hence, the sample space of this experiment is given by
S = {T, HT, HHT, HHHT, HHHHT, HHHHHT, ...}
APPEARS IN
संबंधित प्रश्न
Describe the sample space for the indicated experiment: A coin is tossed and then a die is rolled only in case a head is shown on the coin.
2 boys and 2 girls are in Room X, and 1 boy and 3 girls in Room Y. Specify the sample space for the experiment in which a room is selected and then a person.
An experiment consists of recording boy-girl composition of families with 2 children.
(i) What is the sample space if we are interested in knowing whether it is a boy or girl in the order of their births?
(ii) What is the sample space if we are interested in the number of girls in the family?
An experiment consists of tossing a coin and then throwing it second time if a head occurs. If a tail occurs on the first toss, then a die is rolled once. Find the sample space.
The numbers 1, 2, 3 and 4 are written separately on four slips of paper. The slips are put in a box and mixed thoroughly. A person draws two slips from the box, one after the other, without replacement. Describe the sample space for the experiment.
A coin is tossed once. Write its sample space
Write the sample space for the experiment of tossing a coin four times.
In a random sampling three items are selected from a lot. Each item is tested and classified as defective (D) or non-defective (N). Write the sample space of this experiment.
A box contains 1 white and 3 identical black balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
A coin is tossed. Find the total number of elementary events and also the total number events associated with the random experiment.
List all events associated with the random experiment of tossing of two coins. How many of them are elementary events.
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(i) Which pairs of events are mutually exclusive?
A card is picked up from a deck of 52 playing cards.
What is the sample space of the experiment?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is either a black card or a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a jack, queen or a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is spade or an ace
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a diamond card
From a deck of 52 cards, four cards are drawn simultaneously, find the chance that they will be the four honours of the same suit.
The face cards are removed from a full pack. Out of the remaining 40 cards, 4 are drawn at random. what is the probability that they belong to different suits?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is odd?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has all boys?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has at least one girl?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has at most one girl?
In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either any one or both kinds of sets?
n (≥ 3) persons are sitting in a row. Two of them are selected. Write the probability that they are together.
If the letters of the word 'MISSISSIPPI' are written down at random in a row, what is the probability that four S's come together.
Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral.
Two dice are thrown simultaneously. The probability of obtaining a total score of 5 is
The probability of getting a total of 10 in a single throw of two dices is
A pack of cards contains 4 aces, 4 kings, 4 queens and 4 jacks. Two cards are drawn at random. The probability that at least one of them is an ace is
Three digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?
How many two-digit positive integers are multiples of 3?
What is the probability that a randomly chosen two-digit positive integer is a multiple of 3?
A typical PIN (personal identification number) is a sequence of any four symbols chosen from the 26 letters in the alphabet and the ten digits. If all PINs are equally likely, what is the probability that a randomly chosen PIN contains a repeated symbol?
A bag contains 20 tickets numbered 1 to 20. Two tickets are drawn at random. The probability that both the numbers on the ticket are prime is ______.
Two boxes are containing 20 balls each and each ball is either black or white. The total number of black ball in the two boxes is different from the total number of white balls. One ball is drawn at random from each box and the probability that both are white is 0.21 and the probability that both are black is k, then `(100"k")/13` is equal to ______.
Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is ______.