Advertisements
Advertisements
प्रश्न
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a diamond card
उत्तर
Let S denote the sample space.
Then, n(S) = 52
Let E8 = event of drawing a diamond card.
There are 13 diamond cards in a pack of 52 cards, out of which one diamond can be drawn in 13C1 .
∴ n (E8) = 13
APPEARS IN
संबंधित प्रश्न
Describe the sample space for the indicated experiment: A die is thrown two times.
2 boys and 2 girls are in Room X, and 1 boy and 3 girls in Room Y. Specify the sample space for the experiment in which a room is selected and then a person.
A box contains 1 red and 3 identical white balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
A coin is tossed. If it shows a tail, we draw a ball from a box which contains 2 red and 3 black balls. If it shows head, we throw a die. Find the sample space for this experiment.
A coin is tossed and then a die is thrown. Describe the sample space for this experiment.
In a random sampling three items are selected from a lot. Each item is tested and classified as defective (D) or non-defective (N). Write the sample space of this experiment.
An experiment consists of boy-girl composition of families with 2 children.
What is the sample space if we are interested in the number of boys in a family?
2 boys and 2 girls are in room P and 1 boy 3 girls are in room Q. Write the sample space for the experiment in which a room is selected and then a person.
List all events associated with the random experiment of tossing of two coins. How many of them are elementary events.
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a black king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not a black card.
Tickets numbered from 1 to 20 are mixed up together and then a ticket is drawn at random. What is the probability that the ticket has a number which is a multiple of 3 or 7?
A bag contains 6 red, 4 white and 8 blue balls. if three balls are drawn at random, find the probability that one is red, one is white and one is blue.
A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that one ball is black and the other red
A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that both the balls are of the same colour.
A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that one is red and two are white
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain:
(i) just one ace
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?
A committee of two persons is selected from two men and two women. What is the probability that the committee will have no man?
Two balls are drawn at random from a bag containing 2 white, 3 red, 5 green and 4 black balls, one by one without, replacement. Find the probability that both the balls are of different colours.
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is a multiple of 4?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is odd?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is greater than 12?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is not a multiple of 6?
An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that both the balls are red .
An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that one ball is red and the other is black
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Compute P(A), P(B) and P(A ∩ B).
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Using the addition law of probability, find P(A ∪ B).
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Calculate \[P\left( \bar{ B} \right)\] from P(B), also calculate \[P\left( \bar{ B } \right)\] directly from the elementary events of \[\bar{ B } \] .
If the letters of the word 'MISSISSIPPI' are written down at random in a row, what is the probability that four S's come together.
If E and E2 are independent evens, write the value of P \[\left( ( E_1 \cup E_2 ) \cap (E \cap E_2 ) \right)\]
A card is drawn at random from a pack of 100 cards numbered 1 to 100. The probability of drawing a number which is a square is
A bag contains 3 red, 4 white and 5 blue balls. All balls are different. Two balls are drawn at random. The probability that they are of different colour is
How many two-digit positive integers are multiples of 3?
Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.
Two boxes are containing 20 balls each and each ball is either black or white. The total number of black ball in the two boxes is different from the total number of white balls. One ball is drawn at random from each box and the probability that both are white is 0.21 and the probability that both are black is k, then `(100"k")/13` is equal to ______.
If 10 different balls are to be placed in 4 distinct boxes at random, then the probability that two of these boxes contain exactly 2 and 3 balls is ______.