हिंदी

A Coin is Tossed Repeatedly Until a Tail Comes up for the First Time. Write the Sample Space for this Experiment. - Mathematics

Advertisements
Advertisements

प्रश्न

A coin is tossed repeatedly until a tail comes up for the first time. Write the sample space for this experiment.

उत्तर

In this experiment, a tail (T) may come up on the first throw, the second throw, the third throw and so on, until T is obtained.
This process continues indefinitely.
Hence, the sample space of this experiment is given by
S = {T, HT, HHT, HHHT, HHHHT, HHHHHT, ...} 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Probability - Exercise 33.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 33 Probability
Exercise 33.1 | Q 12 | पृष्ठ ७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

2 boys and 2 girls are in Room X, and 1 boy and 3 girls in Room Y. Specify the sample space for the experiment in which a room is selected and then a person.


The numbers 1, 2, 3 and 4 are written separately on four slips of paper. The slips are put in a box and mixed thoroughly. A person draws two slips from the box, one after the other, without replacement. Describe the sample space for the experiment.


An experiment consists of rolling a die and then tossing a coin once if the number on the die is even. If the number on the die is odd, the coin is tossed twice. Write the sample space for this experiment.


Write the sample space for the experiment of tossing a coin four times.

 

A coin is tossed and then a die is rolled only in case a head is shown on the coin. Describe the sample space for this experiment.


An experiment consists of boy-girl composition of families with 2 children. 

What is the sample space if we are interested in knowing whether it is a boy or girl in the order of their births?

 


There are three coloured dice of red, white and black colour. These dice are placed in a bag. One die is drawn at random from the bag and rolled its colour and the number on its uppermost face is noted. Describe the sample space for this experiment.

 

A coin is tossed. Find the total number of elementary events and also the total number events associated with the random experiment.

 

A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is either a black card or a king


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not a black card.

 

Tickets numbered from 1 to 20 are mixed up together and then a ticket is drawn at random. What is the probability that the ticket has a number which is a multiple of 3 or 7?


A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that both the balls are of the same colour.

 

Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?

 

The face cards are removed from a full pack. Out of the remaining 40 cards, 4 are drawn at random. what is the probability that they belong to different suits?


Find the probability that in a random arrangement of the letters of the word 'SOCIAL' vowels come together.


The letters of the word' CLIFTON' are placed at random in a row. What is the chance that two vowels come together?


A committee of two persons is selected from two men and two women. What is the probability that the committee will have one man?


Two balls are drawn at random from a bag containing 2 white, 3 red, 5 green and 4 black balls, one by one without, replacement. Find the probability that both the balls are of different colours.


20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is odd?


20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is greater than 12?


A bag contains tickets numbered from 1 to 20. Two tickets are drawn. Find the probability that  both the tickets have prime numbers on them


A bag contains tickets numbered from 1 to 20. Two tickets are drawn. Find the probability that  on one there is a prime number and on the other there is a multiple of 4.as


An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that one ball is red and the other is black


An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that  one ball is white. 


Two cards are drawn from a well shuffled pack of 52 cards. Find the probability that either both are black or both are kings.


In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either any one or both kinds of sets?  


A sample space consists of 9 elementary events E1E2E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1E5E8}, B = {E2E5E8, E9}   

 Calculate \[P\left( \bar{ B} \right)\]  from P(B), also calculate \[P\left( \bar{ B } \right)\]  directly from the elementary events of \[\bar{ B } \] .

 


If the letters of the word 'MISSISSIPPI' are written down at random in a row, what is the probability that four S's come together.

 

Two dice are thrown together. The probability that at least one will show its digit greater than 3 is


A card is drawn at random from a pack of 100 cards numbered 1 to 100. The probability of drawing a number which is a square is


Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral?


Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.


The probability that a randomly chosen 2 × 2 matrix with all the entries from the set of first 10 primes, is singular, is equal to ______.


If 10 different balls are to be placed in 4 distinct boxes at random, then the probability that two of these boxes contain exactly 2 and 3 balls is ______.


Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×