Advertisements
Advertisements
प्रश्न
A box contains 1 red and 3 black balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
उत्तर
The box contains one red ball and three black balls.
Let us denote the red ball as R and the three black balls as B1, B2 and B3.
The sample space of this experiment is given by
S = {(R, B1), (R, B2), (R, B3), (B1, R), (B1, B2), (B1, B3), (B2, B1), (B2, B3), (B2, R), (B3, R), (B3, B1), (B3, B2)}
APPEARS IN
संबंधित प्रश्न
Describe the sample space for the indicated experiment: A coin is tossed and then a die is rolled only in case a head is shown on the coin.
A box contains 1 red and 3 identical white balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
What is the total number of elementary events associated to the random experiment of throwing three dice together?
A coin is tossed and then a die is thrown. Describe the sample space for this experiment.
A coin is tossed twice. If the second throw results in a tail, a die is thrown. Describe the sample space for this experiment.
A pair of dice is rolled. If the outcome is a doublet, a coin is tossed. Determine the total number of elementary events associated to this experiment.
An experiment consists of boy-girl composition of families with 2 children.
What is the sample space if we are interested in knowing whether it is a boy or girl in the order of their births?
There are three coloured dice of red, white and black colour. These dice are placed in a bag. One die is drawn at random from the bag and rolled its colour and the number on its uppermost face is noted. Describe the sample space for this experiment.
A bag contains one white and one red ball. A ball is drawn from the bag. If the ball drawn is white it is replaced in the bag and again a ball is drawn. Otherwise, a die is tossed. Write the sample space for this experiment.
A coin is tossed. Find the total number of elementary events and also the total number events associated with the random experiment.
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(ii) Which events are elementary events?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is spade or an ace
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not an ace
Tickets numbered from 1 to 20 are mixed up together and then a ticket is drawn at random. What is the probability that the ticket has a number which is a multiple of 3 or 7?
A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that both the balls are white
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?
Find the probability that in a random arrangement of the letters of the word 'SOCIAL' vowels come together.
A committee of two persons is selected from two men and two women. What is the probability that the committee will have one man?
Two balls are drawn at random from a bag containing 2 white, 3 red, 5 green and 4 black balls, one by one without, replacement. Find the probability that both the balls are of different colours.
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has 1 boys and 2 girls?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has at least one girl?
Five cards are drawn from a well-shuffled pack of 52 cards. Find the probability that all the five cards are hearts.
Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Compute P(A), P(B) and P(A ∩ B).
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
List the composition of the event A ∪ B, and calculate P(A ∪ B) by addting the probabilities of elementary events.
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Calculate \[P\left( \bar{ B} \right)\] from P(B), also calculate \[P\left( \bar{ B } \right)\] directly from the elementary events of \[\bar{ B } \] .
What is the probability that a leap year will have 53 Fridays or 53 Saturdays?
What is the probability that the 13th days of a randomly chosen month is Friday?
If E and E2 are independent evens, write the value of P \[\left( ( E_1 \cup E_2 ) \cap (E \cap E_2 ) \right)\]
Two dice are thrown simultaneously. The probability of obtaining total score of seven is
A bag contains 3 red, 4 white and 5 blue balls. All balls are different. Two balls are drawn at random. The probability that they are of different colour is
How many two-digit positive integers are multiples of 3?
A bag contains 20 tickets numbered 1 to 20. Two tickets are drawn at random. The probability that both the numbers on the ticket are prime is ______.
Two boxes are containing 20 balls each and each ball is either black or white. The total number of black ball in the two boxes is different from the total number of white balls. One ball is drawn at random from each box and the probability that both are white is 0.21 and the probability that both are black is k, then `(100"k")/13` is equal to ______.
Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is ______.