मराठी

An ordinary deck of cards contains 52 cards divided into four suits. The red suits are diamonds and hearts and black suits are clubs and spades. The cards J, Q, and K are called face cards. Suppose - Mathematics

Advertisements
Advertisements

प्रश्न

An ordinary deck of cards contains 52 cards divided into four suits. The red suits are diamonds and hearts and black suits are clubs and spades. The cards J, Q, and K are called face cards. Suppose we pick one card from the deck at random. What is the sample space of the experiment?

बेरीज

उत्तर

The outcomes in the sample space S are 52 cards in the deck.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Probability - Solved Examples [पृष्ठ २८९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 16 Probability
Solved Examples | Q 1.(a) | पृष्ठ २८९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

An experiment consists of recording boy-girl composition of families with 2 children.

(i) What is the sample space if we are interested in knowing whether it is a boy or girl in the order of their births?

(ii) What is the sample space if we are interested in the number of girls in the family?


Suppose 3 bulbs are selected at random from a lot. Each bulb is tested and classified as defective (D) or non-defective (N). Write the sample space of this experiment?


A coin is tossed twice. If the second throw results in a tail, a die is thrown. Describe the sample space for this experiment.


A bag contains one white and one red ball. A ball is drawn from the bag. If the ball drawn is white it is replaced in the bag and again a ball is drawn. Otherwise, a die is tossed. Write the sample space for this experiment.


A box contains 1 white and 3 identical black balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.

 

Three coins are tossed once. Describe the events associated with this random experiment: 

A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(i) Which pairs of events are mutually exclusive?

 


Three coins are tossed once. Describe the events associated with this random experiment: 

A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.

(ii) Which events are elementary events?


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is either a black card or a king


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is black and a king


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a jack, queen or a king


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is neither a heart nor a king


In shuffling a pack of 52 playing cards, four are accidently dropped; find the chance that the missing cards should be one from each suit.


There are four men and six women on the city councils. If one council member is selected for a committee at random, how likely is that it is a women?

 

The letters of the word' CLIFTON' are placed at random in a row. What is the chance that two vowels come together?


The letters of the word 'FORTUNATES' are arranged at random in a row. What is the chance that the two 'T' come together.


A committee of two persons is selected from two men and two women. What is the probability that the committee will have  no man? 


20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is not a multiple of 6?


A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has  all boys?


A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has  at most one girl?


A sample space consists of 9 elementary events E1E2E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1E5E8}, B = {E2E5E8, E9}   

 Using the addition law of probability, find P(A ∪ B).


Two dice are thrown simultaneously. The probability of obtaining total score of seven is


The probabilities of happening of two events A and B are 0.25 and 0.50 respectively. If the probability of happening of A and B together is 0.14, then probability that neither Anor B happens is


A typical PIN (personal identification number) is a sequence of any four symbols chosen from the 26 letters in the alphabet and the ten digits. If all PINs are equally likely, what is the probability that a randomly chosen PIN contains a repeated symbol?


A bag contains 20 tickets numbered 1 to 20. Two tickets are drawn at random. The probability that both the numbers on the ticket are prime is ______.


Two boxes are containing 20 balls each and each ball is either black or white. The total number of black ball in the two boxes is different from the total number of white balls. One ball is drawn at random from each box and the probability that both are white is 0.21 and the probability that both are black is k, then `(100"k")/13` is equal to ______.


If 10 different balls are to be placed in 4 distinct boxes at random, then the probability that two of these boxes contain exactly 2 and 3 balls is ______.


Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×