Advertisements
Advertisements
प्रश्न
An ordinary deck of cards contains 52 cards divided into four suits. The red suits are diamonds and hearts and black suits are clubs and spades. The cards J, Q, and K are called face cards. Suppose we pick one card from the deck at random. What is the sample space of the experiment?
उत्तर
The outcomes in the sample space S are 52 cards in the deck.
APPEARS IN
संबंधित प्रश्न
Describe the sample space for the indicated experiment: A coin is tossed and a die is thrown.
Describe the sample space for the indicated experiment: A coin is tossed and then a die is rolled only in case a head is shown on the coin.
One die of red colour, one of white colour and one of blue colour are placed in a bag. One die is selected at random and rolled, its colour and the number on its uppermost face is noted. Describe the sample space.
A coin is tossed. If the out come is a head, a die is thrown. If the die shows up an even number, the die is thrown again. What is the sample space for the experiment?
An experiment consists of rolling a die and then tossing a coin once if the number on the die is even. If the number on the die is odd, the coin is tossed twice. Write the sample space for this experiment.
A coin is tossed. If it shows a tail, we draw a ball from a box which contains 2 red and 3 black balls. If it shows head, we throw a die. Find the sample space for this experiment.
A coin is tossed and then a die is thrown. Describe the sample space for this experiment.
A coin is tossed and then a die is rolled only in case a head is shown on the coin. Describe the sample space for this experiment.
A box contains 1 red and 3 black balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
A pair of dice is rolled. If the outcome is a doublet, a coin is tossed. Determine the total number of elementary events associated to this experiment.
A bag contains 4 identical red balls and 3 identical black balls. The experiment consists of drawing one ball, then putting it into the bag and again drawing a ball. What are the possible outcomes of the experiment?
A box contains 1 white and 3 identical black balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
The letters of the word' CLIFTON' are placed at random in a row. What is the chance that two vowels come together?
The letters of the word 'FORTUNATES' are arranged at random in a row. What is the chance that the two 'T' come together.
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has all boys?
An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that both the balls are red .
An integer is chosen at random from first 200 positive integers. Find the probability that the integer is divisible by 6 or 8.
Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Compute P(A), P(B) and P(A ∩ B).
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Using the addition law of probability, find P(A ∪ B).
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
List the composition of the event A ∪ B, and calculate P(A ∪ B) by addting the probabilities of elementary events.
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Calculate \[P\left( \bar{ B} \right)\] from P(B), also calculate \[P\left( \bar{ B } \right)\] directly from the elementary events of \[\bar{ B } \] .
A single letter is selected at random from the word 'PROBABILITY'. What is the probability that it is a vowel?
Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral.
If E and E2 are independent evens, write the value of P \[\left( ( E_1 \cup E_2 ) \cap (E \cap E_2 ) \right)\]
Four persons are selected at random out of 3 men, 2 women and 4 children. The probability that there are exactly 2 children in the selection is
The probabilities of happening of two events A and B are 0.25 and 0.50 respectively. If the probability of happening of A and B together is 0.14, then probability that neither Anor B happens is
If the probability for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is
Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is ______.