Advertisements
Advertisements
प्रश्न
Describe the sample space for the indicated experiment: A coin is tossed four times.
उत्तर
When a coin is tossed once, there are two possible outcomes: head (H) and tail (T).
When a coin is tossed four times, the total number of possible outcomes is 24 = 16
Thus, when a coin is tossed four times, the sample space is given by:
S = {HHHH, HHHT, HHTH, HHTT, HTHH, HTHT, HTTH, HTTT, THHH, THHT, THTH, THTT, TTHH, TTHT, TTTH, TTTT}
APPEARS IN
संबंधित प्रश्न
Describe the sample space for the indicated experiment: A coin is tossed three times.
Describe the sample space for the indicated experiment: A die is thrown two times.
A box contains 1 red and 3 identical white balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
Suppose 3 bulbs are selected at random from a lot. Each bulb is tested and classified as defective (D) or non-defective (N). Write the sample space of this experiment?
A coin is tossed. If it shows a tail, we draw a ball from a box which contains 2 red and 3 black balls. If it shows head, we throw a die. Find the sample space for this experiment.
A coin is tossed once. Write its sample space
Two dice are thrown. Describe the sample space of this experiment.
An experiment consists of tossing a coin and then tossing it second time if head occurs. If a tail occurs on the first toss, then a die is tossed once. Find the sample space.
A pair of dice is rolled. If the outcome is a doublet, a coin is tossed. Determine the total number of elementary events associated to this experiment.
A box contains 1 white and 3 identical black balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
An experiment consists of rolling a die and then tossing a coin once if the number on the die is even. If the number on the die is odd, the coin is tossed twice. Write the sample space for this experiment.
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment.
List all events associated with the random experiment of tossing of two coins. How many of them are elementary events.
A card is picked up from a deck of 52 playing cards.
What is the sample space of the experiment?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is black and a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is spade or an ace
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not a diamond card
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not an ace
A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that both the balls are of the same colour.
There are four men and six women on the city councils. If one council member is selected for a committee at random, how likely is that it is a women?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has 1 boys and 2 girls?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has at most one girl?
An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that one ball is white.
Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Compute P(A), P(B) and P(A ∩ B).
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Using the addition law of probability, find P(A ∪ B).
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Calculate \[P\left( \bar{ B} \right)\] from P(B), also calculate \[P\left( \bar{ B } \right)\] directly from the elementary events of \[\bar{ B } \] .
What is the probability that a leap year will have 53 Fridays or 53 Saturdays?
If the letters of the word 'MISSISSIPPI' are written down at random in a row, what is the probability that four S's come together.
If E and E2 are independent evens, write the value of P \[\left( ( E_1 \cup E_2 ) \cap (E \cap E_2 ) \right)\]
If A and B are two independent events such that \[P (A \cap B) = \frac{1}{6}\text{ and } P (A \cap B) = \frac{1}{3},\] then write the values of P (A) and P (B).
Two dice are thrown together. The probability that at least one will show its digit greater than 3 is
A bag contains 3 red, 4 white and 5 blue balls. All balls are different. Two balls are drawn at random. The probability that they are of different colour is
The probabilities of happening of two events A and B are 0.25 and 0.50 respectively. If the probability of happening of A and B together is 0.14, then probability that neither Anor B happens is
If the probability for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is
Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral?