Advertisements
Advertisements
प्रश्न
A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that one ball is black and the other red
उत्तर
Out of 16 balls, two balls can be drawn in 16C2 ways.
∴ Total number of elementary events = 16C2 = 120
Out of five black balls, one black ball can be drawn in 5C1 ways.
Out of four red balls, one red ball can be drawn in 4C1 ways.
Therefore, one black and one red balls can be drawn in 5C1× 4C1 ways.
∴ Favourable number of ways = 5C1× 4C1 = 5× 4 = 20
Hence, required probability = \[\frac{20}{120} = \frac{1}{6}\]
APPEARS IN
संबंधित प्रश्न
Describe the sample space for the indicated experiment: A coin is tossed three times.
Describe the sample space for the indicated experiment: A coin is tossed and a die is thrown.
2 boys and 2 girls are in Room X, and 1 boy and 3 girls in Room Y. Specify the sample space for the experiment in which a room is selected and then a person.
An experiment consists of tossing a coin and then throwing it second time if a head occurs. If a tail occurs on the first toss, then a die is rolled once. Find the sample space.
Write the sample space for the experiment of tossing a coin four times.
A coin is tossed and then a die is thrown. Describe the sample space for this experiment.
A coin is tossed. If it shows tail, we draw a ball from a box which contains 2 red 3 black balls; if it shows head, we throw a die. Find the sample space of this experiment.
There are three coloured dice of red, white and black colour. These dice are placed in a bag. One die is drawn at random from the bag and rolled its colour and the number on its uppermost face is noted. Describe the sample space for this experiment.
2 boys and 2 girls are in room P and 1 boy 3 girls are in room Q. Write the sample space for the experiment in which a room is selected and then a person.
An experiment consists of rolling a die and then tossing a coin once if the number on the die is even. If the number on the die is odd, the coin is tossed twice. Write the sample space for this experiment.
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment.
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(i) Which pairs of events are mutually exclusive?
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(ii) Which events are elementary events?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is neither an ace nor a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a diamond card
A bag contains 6 red, 4 white and 8 blue balls. if three balls are drawn at random, find the probability that one is red, one is white and one is blue.
A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that two are blue and one is red
Find the probability that in a random arrangement of the letters of the word 'UNIVERSITY', the two I's do not come together.
A committee of two persons is selected from two men and two women. What is the probability that the committee will have no man?
A committee of two persons is selected from two men and two women. What is the probability that the committee will have two men?
Two balls are drawn at random from a bag containing 2 white, 3 red, 5 green and 4 black balls, one by one without, replacement. Find the probability that both the balls are of different colours.
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is greater than 12?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is divisible by 5?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is not a multiple of 6?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has 1 boys and 2 girls?
Five cards are drawn from a well-shuffled pack of 52 cards. Find the probability that all the five cards are hearts.
A bag contains tickets numbered from 1 to 20. Two tickets are drawn. Find the probability that on one there is a prime number and on the other there is a multiple of 4.as
An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that one ball is red and the other is black
An integer is chosen at random from first 200 positive integers. Find the probability that the integer is divisible by 6 or 8.
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Using the addition law of probability, find P(A ∪ B).
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Calculate \[P\left( \bar{ B} \right)\] from P(B), also calculate \[P\left( \bar{ B } \right)\] directly from the elementary events of \[\bar{ B } \] .
A single letter is selected at random from the word 'PROBABILITY'. What is the probability that it is a vowel?
Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral.
If A and B are two independent events such that \[P (A \cap B) = \frac{1}{6}\text{ and } P (A \cap B) = \frac{1}{3},\] then write the values of P (A) and P (B).
Two dice are thrown together. The probability that at least one will show its digit greater than 3 is
Six boys and six girls sit in a row randomly. The probability that all girls sit together is
An ordinary deck of cards contains 52 cards divided into four suits. The red suits are diamonds and hearts and black suits are clubs and spades. The cards J, Q, and K are called face cards. Suppose we pick one card from the deck at random. What is the event that the chosen card is a black face card?
A single letter is selected at random from the word 'PROBABILITY'. The probability that it is a vowel is ______.