Advertisements
Advertisements
प्रश्न
If a coin is tossed three times (or three coins are tossed together), then describe the sample space for this experiment.
उत्तर
A coin has two faces: a head (H) and a tail (T).
When a coin is tossed three times, the total number of possible outcomes is 23 = 8.
Thus, when a coin is tossed three times, the sample space is given by S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.
APPEARS IN
संबंधित प्रश्न
Describe the sample space for the indicated experiment: A coin is tossed three times.
Describe the sample space for the indicated experiment: A coin is tossed and then a die is rolled only in case a head is shown on the coin.
An experiment consists of recording boy-girl composition of families with 2 children.
(i) What is the sample space if we are interested in knowing whether it is a boy or girl in the order of their births?
(ii) What is the sample space if we are interested in the number of girls in the family?
The numbers 1, 2, 3 and 4 are written separately on four slips of paper. The slips are put in a box and mixed thoroughly. A person draws two slips from the box, one after the other, without replacement. Describe the sample space for the experiment.
What is the total number of elementary events associated to the random experiment of throwing three dice together?
A bag contains 4 identical red balls and 3 identical black balls. The experiment consists of drawing one ball, then putting it into the bag and again drawing a ball. What are the possible outcomes of the experiment?
An experiment consists of boy-girl composition of families with 2 children.
What is the sample space if we are interested in knowing whether it is a boy or girl in the order of their births?
An experiment consists of boy-girl composition of families with 2 children.
What is the sample space if we are interested in the number of boys in a family?
There are three coloured dice of red, white and black colour. These dice are placed in a bag. One die is drawn at random from the bag and rolled its colour and the number on its uppermost face is noted. Describe the sample space for this experiment.
A coin is tossed. Find the total number of elementary events and also the total number events associated with the random experiment.
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a black king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is either a black card or a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a jack, queen or a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is neither an ace nor a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a black card
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is not a black card.
In shuffling a pack of 52 playing cards, four are accidently dropped; find the chance that the missing cards should be one from each suit.
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain:
(i) just one ace
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?
There are four men and six women on the city councils. If one council member is selected for a committee at random, how likely is that it is a women?
A committee of two persons is selected from two men and two women. What is the probability that the committee will have one man?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has at least one girl?
A bag contains tickets numbered from 1 to 20. Two tickets are drawn. Find the probability that on one there is a prime number and on the other there is a multiple of 4.as
An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that one ball is white.
Two cards are drawn from a well shuffled pack of 52 cards. Find the probability that either both are black or both are kings.
In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either any one or both kinds of sets?
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Compute P(A), P(B) and P(A ∩ B).
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Using the addition law of probability, find P(A ∪ B).
If the letters of the word 'MISSISSIPPI' are written down at random in a row, what is the probability that four S's come together.
If E and E2 are independent evens, write the value of P \[\left( ( E_1 \cup E_2 ) \cap (E \cap E_2 ) \right)\]
If A and B are two independent events such that \[P (A \cap B) = \frac{1}{6}\text{ and } P (A \cap B) = \frac{1}{3},\] then write the values of P (A) and P (B).
Two dice are thrown simultaneously. The probability of obtaining a total score of 5 is
Four persons are selected at random out of 3 men, 2 women and 4 children. The probability that there are exactly 2 children in the selection is
The probabilities of happening of two events A and B are 0.25 and 0.50 respectively. If the probability of happening of A and B together is 0.14, then probability that neither Anor B happens is
6 boys and 6 girls sit in a row at random. The probability that all the girls sit together is
Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral?
Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.