Advertisements
Advertisements
प्रश्न
A ball is dropped on a floor from a height of 2.0 m. After the collision it rises up to a height of 1.5 m. Assume that 40% of the mechanical energy lost goes as thermal energy into the ball. Calculate the rise in the temperature of the ball in the collision. Heat capacity of the ball is 800 J K−1.
उत्तर
Height of the floor from which ball is dropped, h1 = 2.0 m
Height to which the ball rises after collision, h2 = 1.5 m
Let the mass of ball be m kg.
Let the speed of the ball when it falls from h1 and h2 be v1 and v2, respectively.
`nu_1=sqrt(2gh_1)=sqrt(2xx10xx2)=sqrt40"m/s"`
`nu_2=sqrt(2gh_2)=sqrt(2xx10xx1.5)=sqrt30"m/s"`
Change in kinetic energy is given by
`DeltaK=1/2xxmxx40-(1/2m)xx30=(10/2)m`
`rArrDeltaK=5"m"`
If the position of the ball is considered just before hitting the ground and after its first collision, then 40% of the change in its KE will give the change in thermal energy of the ball. At these positions, the PE of the ball is same. Thus,
Loss in PE = 0
The change in kinetic energy is utilised in increasing the temperature of the ball.
Let the change in temperature be ΔT. Then,
`(40/100)xxDeltaK=mxx800xxDeltaT`
`(40/100)xx10/2m=mxx800xxDeltaT`
`rArrDeltaT=1/400=0.0025`
`=2.5xx10^-3°C`
APPEARS IN
संबंधित प्रश्न
The electrical resistance in ohms of a certain thermometer varies with temperature according to the approximate law:
R = Ro [1 + α (T – To)]
The resistance is 101.6 Ω at the triple-point of water 273.16 K, and 165.5 Ω at the normal melting point of lead (600.5 K). What is the temperature when the resistance is 123.4 Ω?
Two ideal gas thermometers Aand Buse oxygen and hydrogen respectively. The following observations are made:
Temperature | Pressure thermometer A | Pressure thermometer B |
Triple-point of water | 1.250 × 105 Pa | 0.200 × 105 Pa |
Normal melting point of sulphur | 1.797 × 105 Pa | 0.287 × 105 Pa |
(a) What is the absolute temperature of the normal melting point of sulphur as read by thermometers Aand B?
(b) What do you think is the reason behind the slight difference in answers of thermometers Aand B? (The thermometers are not faulty). What further procedure is needed in the experiment to reduce the discrepancy between the two readings?
In defining the ideal gas temperature scale, it is assumed that the pressure of the gas at constant volume is proportional to the temperature T. How can we verify whether this is true or not? Do we have to apply the kinetic theory of gases? Do we have to depend on experimental result that the pressure is proportional to temperature?
Consider the following statements.
(A) The coefficient of linear expansion has dimension K–1.
(B) The coefficient of volume expansion has dimension K–1.
The steam point and the ice point of a mercury thermometer are marked as 80° and 20°. What will be the temperature on a centigrade mercury scale when this thermometer reads 32°?
An aluminium vessel of mass 0.5 kg contains 0.2 kg of water at 20°C. A block of iron of mass 0.2 kg at 100°C is gently put into the water. Find the equilibrium temperature of the mixture. Specific heat capacities of aluminium, iron and water are 910 J kg−1 K−1, 470 J kg−1 K−1 and 4200 J kg−1 K−1 respectively.
The pressures of the gas in a constant volume gas thermometer are 80 cm, 90 cm and 100 cm of mercury at the ice point, the steam point and in a heated wax bath, respectively. Find the temperature of the wax bath.
Four 2 cm × 2 cm × 2 cm cubes of ice are taken out from a refrigerator and are put in 200 ml of a drink at 10°C. (a) Find the temperature of the drink when thermal equilibrium is attained in it. (b) If the ice cubes do not melt completely, find the amount melted. Assume that no heat is lost to the outside of the drink and that the container has negligible heat capacity. Density of ice = 900 kg m−3, density of the drink = 1000 kg m−3, specific heat capacity of the drink = 4200 J kg−1 K−1, latent heat of fusion of ice = 3.4 × 105 J kg−1.
Two metre scales, one of steel and the other of aluminium, agree at 20°C. Calculate the ratio aluminium-centimetre/steel-centimetre at (a) 0°C, (b) 40°C and (c) 100°C. α for steel = 1.1 × 10–5 °C–1 and for aluminium = 2.3 × 10–5°C–1.
A metre scale is made up of steel and measures correct length at 16°C. What will be the percentage error if this scale is used (a) on a summer day when the temperature is 46°C and (b) on a winter day when the temperature is 6°C? Coefficient of linear expansion of steel = 11 × 10–6 °C–1.
An aluminium can of cylindrical shape contains 500 cm3 of water. The area of the inner cross section of the can is 125 cm2. All measurements refer to 10°C.
Find the rise in the water level if the temperature increases to 80°C. The coefficient of linear expansion of aluminium is 23 × 10–6 °C–1 and the average coefficient of the volume expansion of water is 3.2 × 10–4 °C–1.
A glass vessel measures exactly 10 cm × 10 cm × 10 cm at 0°C. It is filled completely with mercury at this temperature. When the temperature is raised to 10°C, 1.6 cm3 of mercury overflows. Calculate the coefficient of volume expansion of mercury. Coefficient of linear expansion of glass = 6.5 × 10–1 °C–1.
A cube of iron (density = 8000 kg m−3, specific heat capacity = 470 J kg−1 K−1) is heated to a high temperature and is placed on a large block of ice at 0°C. The cube melts the ice below it, displaces the water and sinks. In the final equilibrium position, its upper surface just goes inside the ice. Calculate the initial temperature of the cube. Neglect any loss of heat outside the ice and the cube. The density of ice = 900 kg m−3 and the latent heat of fusion of ice = 3.36 × 105 J kg−1.
A steel rod is rigidly clamped at its two ends. The rod is under zero tension at 20°C. If the temperature rises to 100°C, what force will the rod exert on one of the clamps? Area of cross-section of the rod is 2.00 mm2. Coefficient of linear expansion of steel is 12.0 × 10–6 °C–1 and Young's modulus of steel is 2.00 × 1011 Nm–2.
Two steel rods and an aluminium rod of equal length l0 and equal cross-section are joined rigidly at their ends, as shown in the figure below. All the rods are in a state of zero tension at 0°C. Find the length of the system when the temperature is raised to θ. Coefficient of linear expansion of aluminium and steel are αa and αs, respectively. Young's modulus of aluminium is Ya and of steel is Ys.
Steel |
Aluminium |
Steel |
Answer the following question.
How a thermometer is calibrated?
Solve the following problem.
In a random temperature scale X, water boils at 200 °X and freezes at 20 °X. Find the boiling point of a liquid in this scale if it boils at 62 °C.
The graph between two temperature scales A and B is shown in figure. Between upper fixed point and lower fixed point there are 150 equal division on scale A and 100 on scale B. The relationship for conversion between the two scales is given by ______.
Calculate the temperature which has same numeral value on celsius and Fahrenheit scale.