मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Ball is Dropped on a Floor from a Height of 2.0 M. After the Collision It Rises up to a Height of 1.5 M. Assume that 40% of the Mechanical Energy Lost Goes as Thermal Energy into the Ball. - Physics

Advertisements
Advertisements

प्रश्न

A ball is dropped on a floor from a height of 2.0 m. After the collision it rises up to a height of 1.5 m. Assume that 40% of the mechanical energy lost goes as thermal energy into the ball. Calculate the rise in the temperature of the ball in the collision. Heat capacity of the ball is 800 J K−1.

बेरीज

उत्तर

Height of the floor from which ball is dropped, h1 = 2.0 m

Height to which the ball rises after collision, h2 = 1.5 m

Let the mass of ball be m kg.

Let the speed of the ball when it falls from h1 and h2 be v1 and v2, respectively.

`nu_1=sqrt(2gh_1)=sqrt(2xx10xx2)=sqrt40"m/s"`

`nu_2=sqrt(2gh_2)=sqrt(2xx10xx1.5)=sqrt30"m/s"`

Change in kinetic energy is given by

`DeltaK=1/2xxmxx40-(1/2m)xx30=(10/2)m`

`rArrDeltaK=5"m"`

If the position of the ball is considered just before hitting the ground and after its first collision, then 40% of the change in its KE will give the change in thermal energy of the ball. At these positions, the PE of the ball is same. Thus,

Loss in PE = 0

The change in kinetic energy is utilised in increasing the temperature of the ball.

Let the change in temperature be ΔT. Then,

`(40/100)xxDeltaK=mxx800xxDeltaT`

`(40/100)xx10/2m=mxx800xxDeltaT`

`rArrDeltaT=1/400=0.0025`

`=2.5xx10^-3°C`

shaalaa.com
Measurement of Temperature
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Calorimetry - Exercises [पृष्ठ ४७]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 3 Calorimetry
Exercises | Q 16 | पृष्ठ ४७

संबंधित प्रश्‍न

Two absolute scales A and B have triple points of water defined to be 200 A and 350 B. What is the relation between TA and TB?


The electrical resistance in ohms of a certain thermometer varies with temperature according to the approximate law:

Ro [1 + α (– To)]

The resistance is 101.6 Ω at the triple-point of water 273.16 K, and 165.5 Ω at the normal melting point of lead (600.5 K). What is the temperature when the resistance is 123.4 Ω?


Answer the following:

The triple-point of water is a standard fixed point in modern thermometry. Why? What is wrong in taking the melting point of ice and the boiling point of water as standard fixed points (as was originally done in the Celsius scale)?


Two ideal gas thermometers Aand Buse oxygen and hydrogen respectively. The following observations are made:

Temperature Pressure thermometer A Pressure thermometer B
Triple-point of water 1.250 × 105 Pa 0.200 × 105 Pa
Normal melting point of sulphur 1.797 × 105 Pa 0.287 × 105 Pa

(a) What is the absolute temperature of the normal melting point of sulphur as read by thermometers Aand B?

(b) What do you think is the reason behind the slight difference in answers of thermometers Aand B? (The thermometers are not faulty). What further procedure is needed in the experiment to reduce the discrepancy between the two readings?


In which of the following pairs of temperature scales, the size of a degree is identical?
(a) Mercury scale and ideal gas scale
(b) Celsius scale and mercury scale
(c) Celsius scale and ideal gas scale
(d) Ideal gas scale and absolute scale


The pressure measured by a constant volume gas thermometer is 40 kPa at the triple point of water. What will be the pressure measured at the boiling point of water (100°C)?


The pressure of the gas in a constant volume gas thermometer is 70 kPa at the ice point.  Find the pressure at the steam point.


In a Callender's compensated  constant pressure air thermometer, the volume of the bulb is 1800 cc. When the bulb is kept immersed in a vessel, 200 cc of mercury has to be poured out. Calculate the temperature of the vessel.


A platinum resistance thermometer reads 0° when its resistance is 80 Ω and 100° when its resistance is 90 Ω.
Find the temperature at the platinum scale at which the resistance is 86 Ω.


Four 2 cm × 2 cm × 2 cm cubes of ice are taken out from a refrigerator and are put in 200 ml of a drink at 10°C. (a) Find the temperature of the drink when thermal equilibrium is attained in it. (b) If the ice cubes do not melt completely, find the amount melted. Assume that no heat is lost to the outside of the drink and that the container has negligible heat capacity. Density of ice = 900 kg m−3, density of the drink = 1000 kg m−3, specific heat capacity of the drink = 4200 J kg−1 K−1, latent heat of fusion of ice = 3.4 × 105 J kg−1.


A metre scale is made up of steel and measures correct length at 16°C. What will be the percentage error if this scale is used (a) on a summer day when the temperature is 46°C and (b) on a winter day when the temperature is 6°C? Coefficient of linear expansion of steel = 11 × 10–6 °C–1.


A metre scale made of steel reads accurately at 20°C. In a sensitive experiment, distances accurate up to 0.055 mm in 1 m are required. Find the range of temperature in which the experiment can be performed with this metre scale. Coefficient of linear expansion of steel  = 11 × 10–6 °C–1.


An aluminium can of cylindrical shape contains 500 cm3 of water. The area of the inner cross section of the can is 125 cm2. All measurements refer to 10°C.
Find the rise in the water level if the temperature increases to 80°C. The coefficient of linear expansion of aluminium is 23 × 10–6 °C–1 and the average coefficient of the volume expansion of water is 3.2 × 10–4 °C–1.


A steel rod is rigidly clamped at its two ends. The rod is under zero tension at 20°C. If the temperature rises to 100°C, what force will the rod exert on one of the clamps? Area of cross-section of the rod is 2.00 mm2. Coefficient of linear expansion of steel is 12.0 × 10–6 °C–1 and Young's modulus of steel is 2.00 × 1011 Nm–2.


A copper cube of mass 200 g slides down on a rough inclined plane of inclination 37° at a constant speed. Assume that any loss in mechanical energy goes into the copper block as thermal energy. Find the increase in the temperature of the block as it slides down through 60 cm. Specific heat capacity of copper = 420 J kg−1 K−1.


Two steel rods and an aluminium rod of equal length l0 and equal cross-section are joined rigidly at their ends, as shown in the figure below. All the rods are in a state of zero tension at 0°C. Find the length of the system when the temperature is raised to θ. Coefficient of linear expansion of aluminium and steel are αa and αs, respectively. Young's modulus of aluminium is Ya and of steel is Ys

Steel
Aluminium
Steel

Solve the following problem.

In a random temperature scale X, water boils at 200 °X and freezes at 20 °X. Find the boiling point of a liquid in this scale if it boils at 62 °C.


If the temperature on the Fahrenheit scale is 140 °F, then the same temperature on the Kelvin scale will be:  


Calculate the temperature which has same numeral value on celsius and Fahrenheit scale.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×