मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Four 2 Cm × 2 Cm × 2 Cm Cubes of Ice Are Taken Out from a Refrigerator and Are Put in 200 Ml of a Drink at 10°C. - Physics

Advertisements
Advertisements

प्रश्न

Four 2 cm × 2 cm × 2 cm cubes of ice are taken out from a refrigerator and are put in 200 ml of a drink at 10°C. (a) Find the temperature of the drink when thermal equilibrium is attained in it. (b) If the ice cubes do not melt completely, find the amount melted. Assume that no heat is lost to the outside of the drink and that the container has negligible heat capacity. Density of ice = 900 kg m−3, density of the drink = 1000 kg m−3, specific heat capacity of the drink = 4200 J kg−1 K−1, latent heat of fusion of ice = 3.4 × 105 J kg−1.

बेरीज

उत्तर

(a)
Given:-
Number of ice cubes = 4
Volume of each ice cube = (2 × 2 × 2) = 8 cm3
Density of ice = 900 kg m−3 
Total mass of ice, mi = (4 × 8 ×10−6 ×900) = 288×10−4 kg
Latent heat of fusion of ice, Li = 3.4 × 105 J kg−1
Density of the drink = 1000 kg m−3
Volume of the drink = 200 ml
Mass of the drink = (200×10−6)×1000 kg

Let us first check the heat released when temperature of 200 ml changes from 10oC to 0oC.
Hw = (200×10−6)×1000×4200×(10−0) = 8400 J

Heat required to change four 8 cm3 ice cubes into water (Hi) = miLi = (288×10−4)×(3.4×105) = 9792 J

Since the heat required for melting the four cubes of the ice is greater than the heat released by water ( Hi > Hw ), some ice will remain solid and there will be equilibrium between
ice and water. Thus, the thermal equilibrium will be attained at 0o C.

(b)
Equilibrium temperature of the cube and the drink = 0°C
Let M be the mass of melted ice.
Heat released when temperature of 200 ml changes from 10oC to 0oC is given by
Hw = (200×10−6)×1000×4200×(10−0) = 8400 J

Thus,
M×(3.4×105) = 8400 J

Therefore,
M = 0.0247 Kg = 25 g

shaalaa.com
Measurement of Temperature
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Calorimetry - Exercises [पृष्ठ ४७]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 3 Calorimetry
Exercises | Q 4 | पृष्ठ ४७

संबंधित प्रश्‍न

The triple points of neon and carbon dioxide are 24.57 K and 216.55 K respectively. Express these temperatures on the Celsius and Fahrenheit scales.


In defining the ideal gas temperature scale, it is assumed that the pressure of the gas at constant volume is proportional to the temperature T. How can we verify whether this is true or not? Do we have to apply the kinetic theory of gases? Do we have to depend on experimental result that the pressure is proportional to temperature?


If the temperature of a uniform rod is slightly increased by ∆t, its moment of inertia about a perpendicular bisector increases by


In which of the following pairs of temperature scales, the size of a degree is identical?
(a) Mercury scale and ideal gas scale
(b) Celsius scale and mercury scale
(c) Celsius scale and ideal gas scale
(d) Ideal gas scale and absolute scale


The steam point and the ice point of a mercury thermometer are marked as 80° and 20°. What will be the temperature on a centigrade mercury scale when this thermometer reads 32°?


The pressure measured by a constant volume gas thermometer is 40 kPa at the triple point of water. What will be the pressure measured at the boiling point of water (100°C)?


The pressure of the gas in a constant volume gas thermometer is 70 kPa at the ice point.  Find the pressure at the steam point.


In a Callender's compensated  constant pressure air thermometer, the volume of the bulb is 1800 cc. When the bulb is kept immersed in a vessel, 200 cc of mercury has to be poured out. Calculate the temperature of the vessel.


Two metre scales, one of steel and the other of aluminium, agree at 20°C. Calculate the ratio aluminium-centimetre/steel-centimetre at (a) 0°C, (b) 40°C and (c) 100°C. α for steel = 1.1 × 10–5 °C–1 and for aluminium = 2.3 × 10–5°C–1.


A metre scale is made up of steel and measures correct length at 16°C. What will be the percentage error if this scale is used (a) on a summer day when the temperature is 46°C and (b) on a winter day when the temperature is 6°C? Coefficient of linear expansion of steel = 11 × 10–6 °C–1.


A metre scale made of steel reads accurately at 20°C. In a sensitive experiment, distances accurate up to 0.055 mm in 1 m are required. Find the range of temperature in which the experiment can be performed with this metre scale. Coefficient of linear expansion of steel  = 11 × 10–6 °C–1.


A glass vessel measures exactly 10 cm × 10 cm × 10 cm at 0°C. It is filled completely with mercury at this temperature. When the temperature is raised to 10°C, 1.6 cm3 of mercury overflows. Calculate the coefficient of volume expansion of mercury. Coefficient of linear expansion of glass = 6.5 × 10–1 °C–1.


A copper cube of mass 200 g slides down on a rough inclined plane of inclination 37° at a constant speed. Assume that any loss in mechanical energy goes into the copper block as thermal energy. Find the increase in the temperature of the block as it slides down through 60 cm. Specific heat capacity of copper = 420 J kg−1 K−1.


A metal block of density 600 kg m−3 and mass 1.2 kg is suspended through a spring of spring constant 200 N m−1. The spring-block system is dipped in water kept in a vessel. The water has a mass of 260 g and the bloc is at a height 40 cm above the bottom of the vessel. If the support of the spring is broken, what will be the rise in the temperature of the water. Specific heat capacity of the block is 250 J kg−3 K−1 and that of water is 4200 J kg−1 K−1. Heat capacities of the vessel and the spring are negligible.


A torsional pendulum consists of a solid  disc connected to a thin wire (α = 2.4 × 10–5°C–1) at its centre. Find the percentage change in the time period between peak winter (5°C) and peak summer (45°C).
  


Answer the following question.

How a thermometer is calibrated?


Solve the following problem.

In a random temperature scale X, water boils at 200 °X and freezes at 20 °X. Find the boiling point of a liquid in this scale if it boils at 62 °C.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×