Advertisements
Advertisements
प्रश्न
The pressure of the gas in a constant volume gas thermometer is 70 kPa at the ice point. Find the pressure at the steam point.
उत्तर
Given:
Temperature of ice point, T1 = 273.15 K
Temperature of steam point, T2 = 373.15 K
Pressure of the gas in a constant volume thermometer at the ice point, P1 = 70 kPa,
Let Ptr be the pressure at the triple point and P2 be the pressure at the steam point.
The temperature-pressure relations for ice point and steam point are given below:
For ice point,
\[T_1 = \frac{P_1}{P_{tr}} \times 273 . 16 K\]
\[\Rightarrow 273 . 15 = \frac{70}{P_{tr}} \times {10}^3 \times 273 . 16\]
\[ \Rightarrow P_{tr} = \frac{70 \times 273 . 16 \times {10}^3}{273 . 15} Pa\]
For steam point,
\[T_2 = \frac{P_2 \times 273 . 16}{P_{tr}} K\]
On substituting the value of Ptr ,we get:
\[373 . 15 = \frac{P_2 \times 273 . 15 \times 273 . 16}{70 \times 273 . 16 \times {10}^3} \]
\[ \Rightarrow P_2 = \frac{373 . 15 \times 70 \times {10}^3}{273 . 15}\]
\[ \Rightarrow P_2 = 95 . 626 \times {10}^3 Pa\]
\[ \Rightarrow P_2 \simeq 96 kPa\]
Therefore, the pressure at steam point is 96 kPa.
APPEARS IN
संबंधित प्रश्न
The electrical resistance in ohms of a certain thermometer varies with temperature according to the approximate law:
R = Ro [1 + α (T – To)]
The resistance is 101.6 Ω at the triple-point of water 273.16 K, and 165.5 Ω at the normal melting point of lead (600.5 K). What is the temperature when the resistance is 123.4 Ω?
Consider the following statements.
(A) The coefficient of linear expansion has dimension K–1.
(B) The coefficient of volume expansion has dimension K–1.
If the temperature of a uniform rod is slightly increased by ∆t, its moment of inertia I about a perpendicular bisector increases by
In which of the following pairs of temperature scales, the size of a degree is identical?
(a) Mercury scale and ideal gas scale
(b) Celsius scale and mercury scale
(c) Celsius scale and ideal gas scale
(d) Ideal gas scale and absolute scale
A constant-volume thermometer registers a pressure of 1.500 × 104 Pa at the triple point of water and a pressure of 2.050 × 104 Pa at the normal boiling point. What is the temperature at the normal boiling point?
In a Callender's compensated constant pressure air thermometer, the volume of the bulb is 1800 cc. When the bulb is kept immersed in a vessel, 200 cc of mercury has to be poured out. Calculate the temperature of the vessel.
A platinum resistance thermometer reads 0° when its resistance is 80 Ω and 100° when its resistance is 90 Ω.
Find the temperature at the platinum scale at which the resistance is 86 Ω.
The temperatures of equal masses of three different liquids A, B and C are 12°C, 19°C and 28°C respectively. The temperature when A and B are mixed is 16°C, and when B and C are mixed, it is 23°C. What will be the temperature when A and C are mixed?
A metre scale is made up of steel and measures correct length at 16°C. What will be the percentage error if this scale is used (a) on a summer day when the temperature is 46°C and (b) on a winter day when the temperature is 6°C? Coefficient of linear expansion of steel = 11 × 10–6 °C–1.
An aluminium can of cylindrical shape contains 500 cm3 of water. The area of the inner cross section of the can is 125 cm2. All measurements refer to 10°C.
Find the rise in the water level if the temperature increases to 80°C. The coefficient of linear expansion of aluminium is 23 × 10–6 °C–1 and the average coefficient of the volume expansion of water is 3.2 × 10–4 °C–1.
A glass vessel measures exactly 10 cm × 10 cm × 10 cm at 0°C. It is filled completely with mercury at this temperature. When the temperature is raised to 10°C, 1.6 cm3 of mercury overflows. Calculate the coefficient of volume expansion of mercury. Coefficient of linear expansion of glass = 6.5 × 10–1 °C–1.
A cube of iron (density = 8000 kg m−3, specific heat capacity = 470 J kg−1 K−1) is heated to a high temperature and is placed on a large block of ice at 0°C. The cube melts the ice below it, displaces the water and sinks. In the final equilibrium position, its upper surface just goes inside the ice. Calculate the initial temperature of the cube. Neglect any loss of heat outside the ice and the cube. The density of ice = 900 kg m−3 and the latent heat of fusion of ice = 3.36 × 105 J kg−1.
A steel rod is rigidly clamped at its two ends. The rod is under zero tension at 20°C. If the temperature rises to 100°C, what force will the rod exert on one of the clamps? Area of cross-section of the rod is 2.00 mm2. Coefficient of linear expansion of steel is 12.0 × 10–6 °C–1 and Young's modulus of steel is 2.00 × 1011 Nm–2.
A ball is dropped on a floor from a height of 2.0 m. After the collision it rises up to a height of 1.5 m. Assume that 40% of the mechanical energy lost goes as thermal energy into the ball. Calculate the rise in the temperature of the ball in the collision. Heat capacity of the ball is 800 J K−1.
A copper cube of mass 200 g slides down on a rough inclined plane of inclination 37° at a constant speed. Assume that any loss in mechanical energy goes into the copper block as thermal energy. Find the increase in the temperature of the block as it slides down through 60 cm. Specific heat capacity of copper = 420 J kg−1 K−1.
At what temperature, the reading of a fahrenheit thermometer will be three times that of celsius thermometer?
The graph between two temperature scales A and B is shown in figure. Between upper fixed point and lower fixed point there are 150 equal division on scale A and 100 on scale B. The relationship for conversion between the two scales is given by ______.
Calculate the temperature which has same numeral value on celsius and Fahrenheit scale.