मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Copper Cube of Mass 200 G Slides Down on a Rough Inclined Plane of Inclination 37° at a Constant Speed. Assume that Any Loss in Mechanical Energy Goes into the Copper Block as Thermal Energy. - Physics

Advertisements
Advertisements

प्रश्न

A copper cube of mass 200 g slides down on a rough inclined plane of inclination 37° at a constant speed. Assume that any loss in mechanical energy goes into the copper block as thermal energy. Find the increase in the temperature of the block as it slides down through 60 cm. Specific heat capacity of copper = 420 J kg−1 K−1.

बेरीज

उत्तर

Mass of copper cube, m = 200 g = 0.2 kg

Length through which the block has slided, l = 60 cm = 0.6 m

Since the block is moving with constant velocity, the net force on it is zero. Thus,

Force of friction, f = mg

Also, since the object is moving with a constant velocity, change in its K.E will be zero.As the object slides down, its PE decreases at the cost of increase in thermal energy of copper.

The loss in mechanical energy of the copper block = Work done by the frictional force on the copper block to a distanceof 60 cm

W = mg l sin θ

W = 0.2 × 10 × 0.6 sin 37°

`W=1.2xx(3/5)=0.72`

Let the change in temperature of the block be ∆T.

Thermal energy gained by block = ms ∆T =  0.2 × 420×∆T = 84∆T

But 84∆T = 0.72

`rArrDeltaT=0.72/84=0.00857`

`Delta=0.0086=8.6xx10^-3°C`

shaalaa.com
Measurement of Temperature
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Calorimetry - Exercises [पृष्ठ ४७]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 3 Calorimetry
Exercises | Q 17 | पृष्ठ ४७

संबंधित प्रश्‍न

Two ideal gas thermometers Aand Buse oxygen and hydrogen respectively. The following observations are made:

Temperature Pressure thermometer A Pressure thermometer B
Triple-point of water 1.250 × 105 Pa 0.200 × 105 Pa
Normal melting point of sulphur 1.797 × 105 Pa 0.287 × 105 Pa

(a) What is the absolute temperature of the normal melting point of sulphur as read by thermometers Aand B?

(b) What do you think is the reason behind the slight difference in answers of thermometers Aand B? (The thermometers are not faulty). What further procedure is needed in the experiment to reduce the discrepancy between the two readings?


A brass wire 1.8 m long at 27 °C is held taut with little tension between two rigid supports. If the wire is cooled to a temperature of –39 °C, what is the tension developed in the wire, if its diameter is 2.0 mm? Co-efficient of linear expansion of brass = 2.0 × 10–5 K–1; Young’s modulus of brass = 0.91 × 1011 Pa.


In defining the ideal gas temperature scale, it is assumed that the pressure of the gas at constant volume is proportional to the temperature T. How can we verify whether this is true or not? Do we have to apply the kinetic theory of gases? Do we have to depend on experimental result that the pressure is proportional to temperature?


If the temperature of a uniform rod is slightly increased by ∆t, its moment of inertia about a perpendicular bisector increases by


The steam point and the ice point of a mercury thermometer are marked as 80° and 20°. What will be the temperature on a centigrade mercury scale when this thermometer reads 32°?


The pressure measured by a constant volume gas thermometer is 40 kPa at the triple point of water. What will be the pressure measured at the boiling point of water (100°C)?


The pressure of the gas in a constant volume gas thermometer is 70 kPa at the ice point.  Find the pressure at the steam point.


A piece of iron of mass 100 g is kept inside a furnace for a long time and then put in a calorimeter of water equivalent 10 g containing 240 g of water at 20°C. The mixture attains and equilibrium temperature of 60°C. Find the temperature of the furnace. Specific heat capacity of iron = 470 J kg−1 °C−1.


A metre scale is made up of steel and measures correct length at 16°C. What will be the percentage error if this scale is used (a) on a summer day when the temperature is 46°C and (b) on a winter day when the temperature is 6°C? Coefficient of linear expansion of steel = 11 × 10–6 °C–1.


A metre scale made of steel reads accurately at 20°C. In a sensitive experiment, distances accurate up to 0.055 mm in 1 m are required. Find the range of temperature in which the experiment can be performed with this metre scale. Coefficient of linear expansion of steel  = 11 × 10–6 °C–1.


A glass vessel measures exactly 10 cm × 10 cm × 10 cm at 0°C. It is filled completely with mercury at this temperature. When the temperature is raised to 10°C, 1.6 cm3 of mercury overflows. Calculate the coefficient of volume expansion of mercury. Coefficient of linear expansion of glass = 6.5 × 10–1 °C–1.


A cube of iron (density = 8000 kg m−3, specific heat capacity = 470 J kg−1 K−1) is heated to a high temperature and is placed on a large block of ice at 0°C. The cube melts the ice below it, displaces the water and sinks. In the final equilibrium position, its upper surface just goes inside the ice. Calculate the initial temperature of the cube. Neglect any loss of heat outside the ice and the cube. The density of ice = 900 kg m−3 and the latent heat of fusion of ice = 3.36 × 105 J kg−1.


A steel rod is rigidly clamped at its two ends. The rod is under zero tension at 20°C. If the temperature rises to 100°C, what force will the rod exert on one of the clamps? Area of cross-section of the rod is 2.00 mm2. Coefficient of linear expansion of steel is 12.0 × 10–6 °C–1 and Young's modulus of steel is 2.00 × 1011 Nm–2.


A torsional pendulum consists of a solid  disc connected to a thin wire (α = 2.4 × 10–5°C–1) at its centre. Find the percentage change in the time period between peak winter (5°C) and peak summer (45°C).
  


A circular disc made of iron is rotated about its axis at a constant velocity ω. Calculate the percentage change in the linear speed of a particle of the rim as the disc is slowly heated from 20°C to 50°C, keeping the angular velocity constant. Coefficient of linear expansion of iron = 1.2 × 10–5 °C–1.


Solve the following problem.

In a random temperature scale X, water boils at 200 °X and freezes at 20 °X. Find the boiling point of a liquid in this scale if it boils at 62 °C.


At what temperature, the reading of a fahrenheit thermometer will be three times that of celsius thermometer?


Calculate the temperature which has same numeral value on celsius and Fahrenheit scale.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×