Advertisements
Advertisements
Question
A copper cube of mass 200 g slides down on a rough inclined plane of inclination 37° at a constant speed. Assume that any loss in mechanical energy goes into the copper block as thermal energy. Find the increase in the temperature of the block as it slides down through 60 cm. Specific heat capacity of copper = 420 J kg−1 K−1.
Solution
Mass of copper cube, m = 200 g = 0.2 kg
Length through which the block has slided, l = 60 cm = 0.6 m
Since the block is moving with constant velocity, the net force on it is zero. Thus,
Force of friction, f = mg
Also, since the object is moving with a constant velocity, change in its K.E will be zero.As the object slides down, its PE decreases at the cost of increase in thermal energy of copper.
The loss in mechanical energy of the copper block = Work done by the frictional force on the copper block to a distanceof 60 cm
W = mg l sin θ
W = 0.2 × 10 × 0.6 sin 37°
`W=1.2xx(3/5)=0.72`
Let the change in temperature of the block be ∆T.
Thermal energy gained by block = ms ∆T = 0.2 × 420×∆T = 84∆T
But 84∆T = 0.72
`rArrDeltaT=0.72/84=0.00857`
`Delta=0.0086=8.6xx10^-3°C`
APPEARS IN
RELATED QUESTIONS
The triple points of neon and carbon dioxide are 24.57 K and 216.55 K respectively. Express these temperatures on the Celsius and Fahrenheit scales.
Two absolute scales A and B have triple points of water defined to be 200 A and 350 B. What is the relation between TA and TB?
Two ideal gas thermometers Aand Buse oxygen and hydrogen respectively. The following observations are made:
Temperature | Pressure thermometer A | Pressure thermometer B |
Triple-point of water | 1.250 × 105 Pa | 0.200 × 105 Pa |
Normal melting point of sulphur | 1.797 × 105 Pa | 0.287 × 105 Pa |
(a) What is the absolute temperature of the normal melting point of sulphur as read by thermometers Aand B?
(b) What do you think is the reason behind the slight difference in answers of thermometers Aand B? (The thermometers are not faulty). What further procedure is needed in the experiment to reduce the discrepancy between the two readings?
A brass wire 1.8 m long at 27 °C is held taut with little tension between two rigid supports. If the wire is cooled to a temperature of –39 °C, what is the tension developed in the wire, if its diameter is 2.0 mm? Co-efficient of linear expansion of brass = 2.0 × 10–5 K–1; Young’s modulus of brass = 0.91 × 1011 Pa.
In defining the ideal gas temperature scale, it is assumed that the pressure of the gas at constant volume is proportional to the temperature T. How can we verify whether this is true or not? Do we have to apply the kinetic theory of gases? Do we have to depend on experimental result that the pressure is proportional to temperature?
If the temperature of a uniform rod is slightly increased by ∆t, its moment of inertia I about a perpendicular bisector increases by
The steam point and the ice point of a mercury thermometer are marked as 80° and 20°. What will be the temperature on a centigrade mercury scale when this thermometer reads 32°?
Which of the following pairs represent units of the same physical quantity?
A constant-volume thermometer registers a pressure of 1.500 × 104 Pa at the triple point of water and a pressure of 2.050 × 104 Pa at the normal boiling point. What is the temperature at the normal boiling point?
The temperatures of equal masses of three different liquids A, B and C are 12°C, 19°C and 28°C respectively. The temperature when A and B are mixed is 16°C, and when B and C are mixed, it is 23°C. What will be the temperature when A and C are mixed?
Two metre scales, one of steel and the other of aluminium, agree at 20°C. Calculate the ratio aluminium-centimetre/steel-centimetre at (a) 0°C, (b) 40°C and (c) 100°C. α for steel = 1.1 × 10–5 °C–1 and for aluminium = 2.3 × 10–5°C–1.
A metre scale made of steel reads accurately at 20°C. In a sensitive experiment, distances accurate up to 0.055 mm in 1 m are required. Find the range of temperature in which the experiment can be performed with this metre scale. Coefficient of linear expansion of steel = 11 × 10–6 °C–1.
A metal block of density 600 kg m−3 and mass 1.2 kg is suspended through a spring of spring constant 200 N m−1. The spring-block system is dipped in water kept in a vessel. The water has a mass of 260 g and the bloc is at a height 40 cm above the bottom of the vessel. If the support of the spring is broken, what will be the rise in the temperature of the water. Specific heat capacity of the block is 250 J kg−3 K−1 and that of water is 4200 J kg−1 K−1. Heat capacities of the vessel and the spring are negligible.
Answer the following question.
How a thermometer is calibrated?
If the temperature on the Fahrenheit scale is 140 °F, then the same temperature on the Kelvin scale will be:
Calculate the temperature which has same numeral value on celsius and Fahrenheit scale.