English
Karnataka Board PUCPUC Science Class 11

If the Temperature of a Uniform Rod is Slightly Increased by ∆T, Its Moment of Inertia I About a Perpendicular Bisector Increases by - Physics

Advertisements
Advertisements

Question

If the temperature of a uniform rod is slightly increased by ∆t, its moment of inertia about a perpendicular bisector increases by

Options

  • zero

  •  αI∆t

  • 2αI∆t

  •  3αI∆t.

MCQ
Fill in the Blanks

Solution

2αI∆t

The change in moment of inertia of uniform rod with change in temperature is given by,

I′ =I (1+2∝Δt)

Here, I = initial moment of inertia
I' = new moment of inertia due to change in temperature

∝= expansion coefficient 

Δt = change in temperature

So, I′ - I = 2αIΔt 

shaalaa.com
Measurement of Temperature
  Is there an error in this question or solution?
Chapter 1: Heat and Temperature - MCQ [Page 12]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 1 Heat and Temperature
MCQ | Q 8 | Page 12

RELATED QUESTIONS

Answer the following:

The triple-point of water is a standard fixed point in modern thermometry. Why? What is wrong in taking the melting point of ice and the boiling point of water as standard fixed points (as was originally done in the Celsius scale)?


In defining the ideal gas temperature scale, it is assumed that the pressure of the gas at constant volume is proportional to the temperature T. How can we verify whether this is true or not? Do we have to apply the kinetic theory of gases? Do we have to depend on experimental result that the pressure is proportional to temperature?


The steam point and the ice point of a mercury thermometer are marked as 80° and 20°. What will be the temperature on a centigrade mercury scale when this thermometer reads 32°?


The pressure of the gas in a constant volume gas thermometer is 70 kPa at the ice point.  Find the pressure at the steam point.


An aluminium vessel of mass 0.5 kg contains 0.2 kg of water at 20°C. A block of iron of mass 0.2 kg at 100°C is gently put into the water. Find the equilibrium temperature of the mixture. Specific heat capacities of aluminium, iron and water are 910 J kg−1 K−1, 470 J kg−1 K−1 and 4200 J kg−1 K−1 respectively.


The pressures of the gas in a constant volume gas thermometer are 80 cm, 90 cm and 100 cm of mercury at the ice point, the steam point and in a heated wax bath, respectively. Find the temperature of the wax bath.


In a Callender's compensated  constant pressure air thermometer, the volume of the bulb is 1800 cc. When the bulb is kept immersed in a vessel, 200 cc of mercury has to be poured out. Calculate the temperature of the vessel.


A piece of iron of mass 100 g is kept inside a furnace for a long time and then put in a calorimeter of water equivalent 10 g containing 240 g of water at 20°C. The mixture attains and equilibrium temperature of 60°C. Find the temperature of the furnace. Specific heat capacity of iron = 470 J kg−1 °C−1.


Four 2 cm × 2 cm × 2 cm cubes of ice are taken out from a refrigerator and are put in 200 ml of a drink at 10°C. (a) Find the temperature of the drink when thermal equilibrium is attained in it. (b) If the ice cubes do not melt completely, find the amount melted. Assume that no heat is lost to the outside of the drink and that the container has negligible heat capacity. Density of ice = 900 kg m−3, density of the drink = 1000 kg m−3, specific heat capacity of the drink = 4200 J kg−1 K−1, latent heat of fusion of ice = 3.4 × 105 J kg−1.


Two metre scales, one of steel and the other of aluminium, agree at 20°C. Calculate the ratio aluminium-centimetre/steel-centimetre at (a) 0°C, (b) 40°C and (c) 100°C. α for steel = 1.1 × 10–5 °C–1 and for aluminium = 2.3 × 10–5°C–1.


A metre scale is made up of steel and measures correct length at 16°C. What will be the percentage error if this scale is used (a) on a summer day when the temperature is 46°C and (b) on a winter day when the temperature is 6°C? Coefficient of linear expansion of steel = 11 × 10–6 °C–1.


A steel rod is rigidly clamped at its two ends. The rod is under zero tension at 20°C. If the temperature rises to 100°C, what force will the rod exert on one of the clamps? Area of cross-section of the rod is 2.00 mm2. Coefficient of linear expansion of steel is 12.0 × 10–6 °C–1 and Young's modulus of steel is 2.00 × 1011 Nm–2.


A ball is dropped on a floor from a height of 2.0 m. After the collision it rises up to a height of 1.5 m. Assume that 40% of the mechanical energy lost goes as thermal energy into the ball. Calculate the rise in the temperature of the ball in the collision. Heat capacity of the ball is 800 J K−1.


Two steel rods and an aluminium rod of equal length l0 and equal cross-section are joined rigidly at their ends, as shown in the figure below. All the rods are in a state of zero tension at 0°C. Find the length of the system when the temperature is raised to θ. Coefficient of linear expansion of aluminium and steel are αa and αs, respectively. Young's modulus of aluminium is Ya and of steel is Ys

Steel
Aluminium
Steel

A torsional pendulum consists of a solid  disc connected to a thin wire (α = 2.4 × 10–5°C–1) at its centre. Find the percentage change in the time period between peak winter (5°C) and peak summer (45°C).
  


A circular disc made of iron is rotated about its axis at a constant velocity ω. Calculate the percentage change in the linear speed of a particle of the rim as the disc is slowly heated from 20°C to 50°C, keeping the angular velocity constant. Coefficient of linear expansion of iron = 1.2 × 10–5 °C–1.


Answer the following question.

How a thermometer is calibrated?


At what temperature, the reading of a fahrenheit thermometer will be three times that of celsius thermometer?


Calculate the temperature which has same numeral value on celsius and Fahrenheit scale.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×