English
Karnataka Board PUCPUC Science Class 11

In a Callender'S Compensated Constant Pressure Air Thermometer, the Volume of the Bulb is 1800 Cc. - Physics

Advertisements
Advertisements

Question

In a Callender's compensated  constant pressure air thermometer, the volume of the bulb is 1800 cc. When the bulb is kept immersed in a vessel, 200 cc of mercury has to be poured out. Calculate the temperature of the vessel.

Answer in Brief

Solution

Given:
Volume of the bulb in a Callender's compensated constant pressure air thermometer, (V) =
1800 cc
Volume of mercury that has to be poured out, V' = 200 cc
Temperature of ice bath, To = 273.15 K
​So the temperature of the vessel(T') is given by:

\[T' = \frac{V}{V - V'} \times T_0 \]

\[ \Rightarrow T' = \frac{1800}{1600} \times 273 . 15 K\]

\[ \Rightarrow T' = 307 . 293\]

\[ \Rightarrow T' \simeq 307 K\]

Therefore, the temperature of the vessel is 307 K.

shaalaa.com
Measurement of Temperature
  Is there an error in this question or solution?
Chapter 1: Heat and Temperature - Exercises [Page 12]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 1 Heat and Temperature
Exercises | Q 7 | Page 12

RELATED QUESTIONS

Answer the following:

The triple-point of water is a standard fixed point in modern thermometry. Why? What is wrong in taking the melting point of ice and the boiling point of water as standard fixed points (as was originally done in the Celsius scale)?


A brass wire 1.8 m long at 27 °C is held taut with little tension between two rigid supports. If the wire is cooled to a temperature of –39 °C, what is the tension developed in the wire, if its diameter is 2.0 mm? Co-efficient of linear expansion of brass = 2.0 × 10–5 K–1; Young’s modulus of brass = 0.91 × 1011 Pa.


Consider the following statements.
(A) The coefficient of linear expansion has dimension K–1.
(B) The coefficient of volume expansion has dimension K–1.


The steam point and the ice point of a mercury thermometer are marked as 80° and 20°. What will be the temperature on a centigrade mercury scale when this thermometer reads 32°?


Which of the following pairs represent units of the same physical quantity?


The temperatures of equal masses of three different liquids A, B and C are 12°C, 19°C and 28°C respectively. The temperature when A and B are mixed is 16°C, and when B and C are mixed, it is 23°C. What will be the temperature when A and C are mixed?


A metre scale is made up of steel and measures correct length at 16°C. What will be the percentage error if this scale is used (a) on a summer day when the temperature is 46°C and (b) on a winter day when the temperature is 6°C? Coefficient of linear expansion of steel = 11 × 10–6 °C–1.


An aluminium can of cylindrical shape contains 500 cm3 of water. The area of the inner cross section of the can is 125 cm2. All measurements refer to 10°C.
Find the rise in the water level if the temperature increases to 80°C. The coefficient of linear expansion of aluminium is 23 × 10–6 °C–1 and the average coefficient of the volume expansion of water is 3.2 × 10–4 °C–1.


A glass vessel measures exactly 10 cm × 10 cm × 10 cm at 0°C. It is filled completely with mercury at this temperature. When the temperature is raised to 10°C, 1.6 cm3 of mercury overflows. Calculate the coefficient of volume expansion of mercury. Coefficient of linear expansion of glass = 6.5 × 10–1 °C–1.


A cube of iron (density = 8000 kg m−3, specific heat capacity = 470 J kg−1 K−1) is heated to a high temperature and is placed on a large block of ice at 0°C. The cube melts the ice below it, displaces the water and sinks. In the final equilibrium position, its upper surface just goes inside the ice. Calculate the initial temperature of the cube. Neglect any loss of heat outside the ice and the cube. The density of ice = 900 kg m−3 and the latent heat of fusion of ice = 3.36 × 105 J kg−1.


A ball is dropped on a floor from a height of 2.0 m. After the collision it rises up to a height of 1.5 m. Assume that 40% of the mechanical energy lost goes as thermal energy into the ball. Calculate the rise in the temperature of the ball in the collision. Heat capacity of the ball is 800 J K−1.


A copper cube of mass 200 g slides down on a rough inclined plane of inclination 37° at a constant speed. Assume that any loss in mechanical energy goes into the copper block as thermal energy. Find the increase in the temperature of the block as it slides down through 60 cm. Specific heat capacity of copper = 420 J kg−1 K−1.


A circular disc made of iron is rotated about its axis at a constant velocity ω. Calculate the percentage change in the linear speed of a particle of the rim as the disc is slowly heated from 20°C to 50°C, keeping the angular velocity constant. Coefficient of linear expansion of iron = 1.2 × 10–5 °C–1.


Answer the following question.

How a thermometer is calibrated?


If the temperature on the Fahrenheit scale is 140 °F, then the same temperature on the Kelvin scale will be:  


Calculate the temperature which has same numeral value on celsius and Fahrenheit scale.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×