Advertisements
Advertisements
Question
A glass vessel measures exactly 10 cm × 10 cm × 10 cm at 0°C. It is filled completely with mercury at this temperature. When the temperature is raised to 10°C, 1.6 cm3 of mercury overflows. Calculate the coefficient of volume expansion of mercury. Coefficient of linear expansion of glass = 6.5 × 10–1 °C–1.
Solution
Given: At 0oC, volume of glass vessel, Vg = 10 × 10 × 10 = 1000 cc = volume of mercury, VHg
Let the volume of mercury at 10°C be V'Hg and that of glass be V'g.
At 10oC, the additional volume of mercury than glass, due to heating, V'Hg – V'g = 1.6 cm3
So change in temperature, ΔT = 10°C
Coefficient of linear expansion of glass, αg = 6.5 × 10–6 °C–1
Therefore, the coefficient of volume expansion of glass, γg = 3 × 6.5 × 10–6°C–1
Let the coefficient of volume expansion of mercury be γHg.
We know that
V'Hg = VHg (1 + γHg ΔT) ...(1)
V'g = Vg (1 + γg ΔT) ...(2)
Subtracting (2) from (1) we get,
V'Hg – V'g = VHg – Vg + VHg γHg ΔT – Vg γg ΔT (as VHg = Vg)
\[\Rightarrow 1 . 6 = 1000 \times \gamma_{Hg} \times 10 - 1000 \times 6 . 5 \times 3 \times {10}^{- 6} \times 10\]
\[ \Rightarrow \gamma_{Hg} = \frac{1 . 6 + 19 . 5 \times {10}^{- 2}}{10000}\]
\[ \Rightarrow \gamma_{Hg} = \frac{1 . 6 + 0 . 195}{10000}\]
\[ \Rightarrow \gamma_{Hg} = \frac{1 . 795}{10000}\]
\[ \Rightarrow \gamma_{Hg} = 1 . 795 \times {10}^{- 4} \]
⇒ γHg ≅ 1.8 × 10-4°C-1
Therefore, the coefficient of volume expansion of mercury is 1.8× 10–4 °C–1.
APPEARS IN
RELATED QUESTIONS
The triple points of neon and carbon dioxide are 24.57 K and 216.55 K respectively. Express these temperatures on the Celsius and Fahrenheit scales.
Two absolute scales A and B have triple points of water defined to be 200 A and 350 B. What is the relation between TA and TB?
Answer the following:
The triple-point of water is a standard fixed point in modern thermometry. Why? What is wrong in taking the melting point of ice and the boiling point of water as standard fixed points (as was originally done in the Celsius scale)?
Two ideal gas thermometers Aand Buse oxygen and hydrogen respectively. The following observations are made:
Temperature | Pressure thermometer A | Pressure thermometer B |
Triple-point of water | 1.250 × 105 Pa | 0.200 × 105 Pa |
Normal melting point of sulphur | 1.797 × 105 Pa | 0.287 × 105 Pa |
(a) What is the absolute temperature of the normal melting point of sulphur as read by thermometers Aand B?
(b) What do you think is the reason behind the slight difference in answers of thermometers Aand B? (The thermometers are not faulty). What further procedure is needed in the experiment to reduce the discrepancy between the two readings?
In defining the ideal gas temperature scale, it is assumed that the pressure of the gas at constant volume is proportional to the temperature T. How can we verify whether this is true or not? Do we have to apply the kinetic theory of gases? Do we have to depend on experimental result that the pressure is proportional to temperature?
In which of the following pairs of temperature scales, the size of a degree is identical?
(a) Mercury scale and ideal gas scale
(b) Celsius scale and mercury scale
(c) Celsius scale and ideal gas scale
(d) Ideal gas scale and absolute scale
The steam point and the ice point of a mercury thermometer are marked as 80° and 20°. What will be the temperature on a centigrade mercury scale when this thermometer reads 32°?
Which of the following pairs represent units of the same physical quantity?
The pressures of the gas in a constant volume gas thermometer are 80 cm, 90 cm and 100 cm of mercury at the ice point, the steam point and in a heated wax bath, respectively. Find the temperature of the wax bath.
In a Callender's compensated constant pressure air thermometer, the volume of the bulb is 1800 cc. When the bulb is kept immersed in a vessel, 200 cc of mercury has to be poured out. Calculate the temperature of the vessel.
A platinum resistance thermometer reads 0° when its resistance is 80 Ω and 100° when its resistance is 90 Ω.
Find the temperature at the platinum scale at which the resistance is 86 Ω.
The temperatures of equal masses of three different liquids A, B and C are 12°C, 19°C and 28°C respectively. The temperature when A and B are mixed is 16°C, and when B and C are mixed, it is 23°C. What will be the temperature when A and C are mixed?
Two metre scales, one of steel and the other of aluminium, agree at 20°C. Calculate the ratio aluminium-centimetre/steel-centimetre at (a) 0°C, (b) 40°C and (c) 100°C. α for steel = 1.1 × 10–5 °C–1 and for aluminium = 2.3 × 10–5°C–1.
A metre scale is made up of steel and measures correct length at 16°C. What will be the percentage error if this scale is used (a) on a summer day when the temperature is 46°C and (b) on a winter day when the temperature is 6°C? Coefficient of linear expansion of steel = 11 × 10–6 °C–1.
A steel rod is rigidly clamped at its two ends. The rod is under zero tension at 20°C. If the temperature rises to 100°C, what force will the rod exert on one of the clamps? Area of cross-section of the rod is 2.00 mm2. Coefficient of linear expansion of steel is 12.0 × 10–6 °C–1 and Young's modulus of steel is 2.00 × 1011 Nm–2.
A copper cube of mass 200 g slides down on a rough inclined plane of inclination 37° at a constant speed. Assume that any loss in mechanical energy goes into the copper block as thermal energy. Find the increase in the temperature of the block as it slides down through 60 cm. Specific heat capacity of copper = 420 J kg−1 K−1.
A metal block of density 600 kg m−3 and mass 1.2 kg is suspended through a spring of spring constant 200 N m−1. The spring-block system is dipped in water kept in a vessel. The water has a mass of 260 g and the bloc is at a height 40 cm above the bottom of the vessel. If the support of the spring is broken, what will be the rise in the temperature of the water. Specific heat capacity of the block is 250 J kg−3 K−1 and that of water is 4200 J kg−1 K−1. Heat capacities of the vessel and the spring are negligible.
Answer the following question.
How a thermometer is calibrated?
At what temperature, the reading of a fahrenheit thermometer will be three times that of celsius thermometer?