Advertisements
Advertisements
प्रश्न
A capacitor has been charged by a dc source. What are the magnitude of conduction and displacement current, when it is fully charged?
उत्तर
Elecric flux through plates of capacitor, `φ_E = q/ε_o`.
Here, q = constant, the capacitor is fully charged.
Displacement current , `I_D= ε_o (dφ_E)/dt = ε_od((q/ε_o)/dt) = 0 `
Contduction current, `I = c (dv)/dt = 0` as volatage becomes constant
when the capacitor becomes fully charged.
APPEARS IN
संबंधित प्रश्न
A parallel plate capacitor (Figure) made of circular plates each of radius R = 6.0 cm has a capacitance C = 100 pF. The capacitor is connected to a 230 V ac supply with a (angular) frequency of 300 rad s−1.
- What is the rms value of the conduction current?
- Is the conduction current equal to the displacement current?
- Determine the amplitude of B at a point 3.0 cm from the axis between the plates.
A parallel-plate capacitor of plate-area A and plate separation d is joined to a battery of emf ε and internal resistance R at t = 0. Consider a plane surface of area A/2, parallel to the plates and situated symmetrically between them. Find the displacement current through this surface as a function of time.
Displacement current is given by ______.
A cylinder of radius R, length Land density p floats upright in a fluid of density p0. The cylinder is given a gentle downward push as a result of which there is a vertical displacement of size x; it is then released; the time period of resulting (undampe (D) oscillations is ______.
Which of the following is the unit of displacement current?
A parallel plate capacitor of plate separation 2 mm is connected in an electric circuit having source voltage 400 V. What is the value of the displacement current for 10-6 second if the plate area is 60 cm2?
A capacitor of capacitance ‘C’, is connected across an ac source of voltage V, given by V = V0 sinωt The displacement current between the plates of the capacitor would then be given by ______.
An electromagnetic wave travelling along z-axis is given as: E = E0 cos (kz – ωt.). Choose the correct options from the following;
- The associated magnetic field is given as `B = 1/c hatk xx E = 1/ω (hatk xx E)`.
- The electromagnetic field can be written in terms of the associated magnetic field as `E = c(B xx hatk)`.
- `hatk.E = 0, hatk.B` = 0.
- `hatk xx E = 0, hatk xx B` = 0.
Show that the magnetic field B at a point in between the plates of a parallel-plate capacitor during charging is `(ε_0mu_r)/2 (dE)/(dt)` (symbols having usual meaning).
Show that average value of radiant flux density ‘S’ over a single period ‘T’ is given by S = `1/(2cmu_0) E_0^2`.