Advertisements
Advertisements
प्रश्न
Show that the magnetic field B at a point in between the plates of a parallel-plate capacitor during charging is `(ε_0mu_r)/2 (dE)/(dt)` (symbols having usual meaning).
उत्तर
Let us assume Id be the displacement current in the region between two plates of parallel plate capacitor, in the figure.
The magnetic field at a point between two plates of capacitor at a perpendicular distance r from the axis of plates is given by
B = `(mu_0 2I_d)/(4pir) = mu_0/(2pir) I_d = mu_0/(2pir) xx ε_r (dphi_E)/(dt)` ......`[because I_d = (E_0dphi_E)/(dt)]`
⇒ B = `(mu_0ε_r)/(2pir) d/(dt) (Epir^2) = (mu_0ε_r)/(2pir) pir^2 (dF)/(dt)`
⇒ B = `(mu_0ε_r)/2 (dE)/(dt)` .....`[because phi_E = Epir^2]`
APPEARS IN
संबंधित प्रश्न
A parallel plate capacitor (Figure) made of circular plates each of radius R = 6.0 cm has a capacitance C = 100 pF. The capacitor is connected to a 230 V ac supply with a (angular) frequency of 300 rad s−1.
- What is the rms value of the conduction current?
- Is the conduction current equal to the displacement current?
- Determine the amplitude of B at a point 3.0 cm from the axis between the plates.
The charging current for a capacitor is 0.25 A. What is the displacement current across its plates?
A capacitor has been charged by a dc source. What are the magnitude of conduction and displacement current, when it is fully charged?
If the total energy of a particle executing SHM is E, then the potential energy V and the kinetic energy K of the particle in terms of E when its displacement is half of its amplitude will be ______.
A cylinder of radius R, length Land density p floats upright in a fluid of density p0. The cylinder is given a gentle downward push as a result of which there is a vertical displacement of size x; it is then released; the time period of resulting (undampe (D) oscillations is ______.
Displacement current goes through the gap between the plantes of a capacitors. When the charge of the capacitor:-
A parallel plate capacitor of plate separation 2 mm is connected in an electric circuit having source voltage 400 V. What is the value of the displacement current for 10-6 second if the plate area is 60 cm2?
A variable frequency a.c source is connected to a capacitor. How will the displacement current change with decrease in frequency?
A long straight cable of length `l` is placed symmetrically along z-axis and has radius a(<< l). The cable consists of a thin wire and a co-axial conducting tube. An alternating current I(t) = I0 sin (2πνt) flows down the central thin wire and returns along the co-axial conducting tube. The induced electric field at a distance s from the wire inside the cable is E(s,t) = µ0I0ν cos (2πνt) In `(s/a)hatk`.
- Calculate the displacement current density inside the cable.
- Integrate the displacement current density across the cross-section of the cable to find the total displacement current Id.
- Compare the conduction current I0 with the displacement current `I_0^d`.
A parallel plate capacitor is charged to 100 × 10-6 C. Due to radiations, falling from a radiating source, the plate loses charge at the rate of 2 × 10-7 Cs-1. The magnitude of displacement current is ______.