Advertisements
Advertisements
प्रश्न
A certain sum amounts to Rs. 5,292 in two years and Rs. 5,556.60 in three years, interest being compounded annually. Find: the original sum.
उत्तर
Let the sum of money = Rs. 100
Interest on it for 1st year= 5% of Rs. 100 = Rs. 5
⇒ Amount in one year= Rs. 100 + Rs. 5 = Rs. 105
Similarly, amount in two years = Rs. 105 + 5% of Rs. 105
= Rs. 105+ Rs. 5.25
= Rs. 110.25
When amount in two years is Rs. 110.25, sum = Rs. 100
⇒ When amount in two years is Rs. 5,292,
sum = Rs. `[ 100 xx 5,292]/[110.25 ]` = Rs. 4,800.
APPEARS IN
संबंधित प्रश्न
Calculate the amount and compound interest on Rs 8000 for 1 year at 9% per annum compound half yearly. (You could use the year by year calculation using SI formula to verify)
Calculate the amount and compound interest on Rs 10000 for 1 year at 8% per annum compounded half yearly.
Find the compound interest at the rate of 5% per annum for 3 years on that principal which in 3 years at the rate of 5% per annum gives Rs 1200 as simple interest.
Rachana borrowed a certain sum at the rate of 15% per annum. If she paid at the end of two years Rs 1290 as interest compounded annually, find the sum she borrowed.
The interest on a sum of Rs 2000 is being compounded annually at the rate of 4% per annum. Find the period for which the compound interest is Rs 163.20.
In how much time would Rs 5000 amount to Rs 6655 at 10% per annum compound interest?
The difference in simple interest and compound interest on a certain sum of money at \[6\frac{2}{3} %\] per annum for 3 years is Rs 46. Determine the sum.
In how many years ₹ 700 will amount to ₹ 847 at a compound interest rate of 10 p.c.p.a.
A certain sum amounts to Rs. 5,292 in two years and Rs. 5,556.60 in three years, interest being compounded annually. Find : the rate of interest.
The compound interest, calculated yearly, on a certain sum of money for the second year is Rs. 1,089 and for the third year it is Rs. 1,197.90. Calculate the rate of interest and the sum of money.
Rachna borrows Rs. 12,000 at 10 percent per annum interest compounded half-yearly. She repays Rs. 4,000 at the end of every six months. Calculate the third payment she has to make at end of 18 months in order to clear the entire loan.
A man borrowed Rs. 20,000 for 2 years at 8% per year compound interest. Calculate :
(i) the interest of the first year.
(ii) the interest of the second year.
(iii) the final amount at the end of the second year.
(iv) the compound interest of two years.
Calculate the amount and the compound interest on Rs. 12,000 in 2 years and at 10% per year.
Calculate the amount and the compound interest on Rs. 10,000 in 3 years at 8% per annum.
Calculate the compound interest on Rs. 5,000 in 2 years; if the rates of interest for successive years be 10% and 12% respectively.
Rekha borrowed Rs. 40,000 for 3 years at 10% per annum compound interest. Calculate the interest paid by her for the second year.
A man invests Rs. 9600 at 10% per annum compound interest for 3 years. Calculate :
(i) the interest for the first year.
(ii) the amount at the end of the first year.
(iii) the interest for the second year.
(iv) the interest for the third year. the interest for the first year.
A certain sum of money invested for 5 years at 8% p.a. simple interest earns an interest of ₹ 12,000. Find:
(i) the sum of money.
(ii) the compound interest earned by this money in two years and at 10% p.a. compound interest.
The compound interest on ₹ 5000 at 12% p.a for 2 years, compounded annually is ___________
If the present population of a city is P and it increases at the rate of r% p.a, then the population n years ago would be `"P"(1 + "r"/100)^"n"`
The compound interest on ₹ 16000 for 9 months at 20% p.a, compounded quarterly is ₹ 2522
Find the compound interest for `2 1/2` years on ₹ 4000 at 10% p.a, if the interest is compounded yearly
Find the C.I. on ₹ 15000 for 3 years if the rates of interest are 15%, 20% and 25% for the I, II and III years respectively
The sum which amounts to ₹ 2662 at 10% p.a in 3 years, compounded yearly is _________
Suppose for the principal P, rate R% and time T, the simple interest is S and compound interest is C. Consider the possibilities.
- C > S
- C = S
- C < S
Then
To calculate the growth of a bacteria if the rate of growth is known, the formula for calculation of amount in compound interest can be used.
Compound interest is the interest calculated on the previous year’s amount.
Find the difference between Compound Interest and Simple Interest on Rs 45,000 at 12% per annum for 5 years.