हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा १२

A computer centre has got three expert programmers. The centre needs three application programmes to be developed. The head of the computer centre, after studying carefully the programmes to be - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A computer centre has got three expert programmers. The centre needs three application programmes to be developed. The head of the computer centre, after studying carefully the programmes to be developed, estimates the computer time in minitues required by the experts to the application programme as follows.

  Programmers
    P Q R
Programmers 1 120 100 80
  2 80 90 110
  3 110 140 120

Assign the programmers to the programme in such a way that the total computer time is least.

सारिणी
योग

उत्तर

Here the number of rows and columns are equal.

∴ The given assignment problem is balanced.

Step 1: Select the smallest element in each row and subtract this from all the elements in its row.

  Programmers
    P Q R
Programmers 1 40 20 0
  2 0 10 30
  3 0 30 10

Step 2: Select the smallest element in each column and subtract this from all the elements in its column.

  Programmers
    P Q R
Programmers 1 40 10 0
  2 0 0 30
  3 0 20 10

Step 3: Examine the rows with exactly one zero, mark the zero by □. Mark other zeros in its column by X.

  Programmers
    P Q R
Programmers 1 40 10 0
  2 0 0 30
  3 0 20 10

Step 4: Now examine the columns with exactly one zero mark the zero by □.

Mark other zeros in its row by X.

  Programmers
    P Q R
Programmers 1 40 10 0
  2 0 0 30
  3 0 20 10

Thus all the three assignment have been made.

The optimal assignment schedule and total cost is

Programmers Programmes Cost
1 R 80
2 Q 90
3 P 110
Total Cost 280

The optimal assignment (minimum) cost = ₹ 280.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Operations Research - Exercise 10.2 [पृष्ठ २५६]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
अध्याय 10 Operations Research
Exercise 10.2 | Q 5 | पृष्ठ २५६

संबंधित प्रश्न

A job production unit has four jobs A, B, C, D which can be manufactured on each of the four machines P, Q, R and S. The processing cost of each job is given in the following table:

         Jobs

 

 

                          Machines

P

Q

R

S

                Processing Cost (Rs.)

 

A

31

25

33

29

B

25

24

23

21

C

19

21

23

24

D

38

36

34

40

 How should the jobs be assigned to the four machines so that the total processing cost is minimum?


Solve the following minimal assignment problem and hence find the minimum value : 

  I II III IV
A 2 10 9 7
B 13 2 12 2
C 3 4 6 1
D 4 15 4 9

 


Solve the following maximal assignment problem :

Branch Manager Monthly Business ( Rs. lakh)
A B C D
P 11 11 9 9
Q 13 16 11 10
R 12 17 13 8
S 16 14 16 12

 


The assignment problem is said to be unbalance if ______


Fill in the blank :

When an assignment problem has more than one solution, then it is _______ optimal solution.


Solve the following problem :

A plant manager has four subordinates, and four tasks to be performed. The subordinates differ in efficiency and the tasks differ in their intrinsic difficulty. This estimate of the time each man would take to perform each task is given in the effectiveness matrix below.

  I II III IV
A 7 25 26 10
B 12 27 3 25
C 37 18 17 14
D 18 25 23 9

How should the tasks be allocated, one to a man, as to minimize the total man hours?


What is the difference between Assignment Problem and Transportation Problem?


A car hire company has one car at each of five depots a, b, c, d and e. A customer in each of the fine towers A, B, C, D and E requires a car. The distance (in miles) between the depots (origins) and the towers(destinations) where the customers are given in the following distance matrix.

  a b c d e
A 160 130 175 190 200
B 135 120 130 160 175
C 140 110 155 170 185
D 50 50 80 80 110
E 55 35 70 80 105

How should the cars be assigned to the customers so as to minimize the distance travelled?


A dairy plant has five milk tankers, I, II, III, IV and V. Three milk tankers are to be used on five delivery routes A, B, C, D and E. The distances (in kms) between the dairy plant and the delivery routes are given in the following distance matrix.

  I II III IV V
A 150 120 175 180 200
B 125 110 120 150 165
C 130 100 145 160 170
D 40 40 70 70 100
E 45 25 60 70 95

How should the milk tankers be assigned to the chilling center so as to minimize the distance travelled?


A job production unit has four jobs P, Q, R, S which can be manufactured on each of the four machines I, II, III and IV. The processing cost of each job for each machine is given in the following table :

Job Machines
(Processing cost in ₹)
I II III IV
P 31 25 33 29
Q 25 24 23 21
R 19 21 23 24
S 38 36 34 40

Complete the following activity to find the optimal assignment to minimize the total processing cost.

Solution:

Step 1: Subtract the smallest element in each row from every element of it. New assignment matrix is obtained as follows :

Job Machines
(Processing cost in ₹)
I II III IV
P 6 0 8 4
Q 4 3 2 0
R 0 2 4 5
S 4 2 0 6

Step 2: Subtract the smallest element in each column from every element of it. New assignment matrix is obtained as above, because each column in it contains one zero.

Step 3: Draw minimum number of vertical and horizontal lines to cover all zeros:

Job Machines
(Processing cost in ₹)
I II III IV
P 6 0 8 4
Q 4 3 2 0
R 0 2 4 5
S 4 2 0 6

Step 4: From step 3, as the minimum number of straight lines required to cover all zeros in the assignment matrix equals the number of rows/columns. Optimal solution has reached.

Examine the rows one by one starting with the first row with exactly one zero is found. Mark the zero by enclosing it in (`square`), indicating assignment of the job. Cross all the zeros in the same column. This step is shown in the following table :

Job Machines
(Processing cost in ₹)
I II III IV
P 6 0 8 4
Q 4 3 2 0
R 0 2 4 5
S 4 2 0 6

Step 5: It is observed that all the zeros are assigned and each row and each column contains exactly one assignment. Hence, the optimal (minimum) assignment schedule is :

Job Machine Min.cost
P II `square`
Q `square` 21
R I `square`
S III 34

Hence, total (minimum) processing cost = 25 + 21 + 19 + 34 = ₹`square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×