Topics
Unit 1
Introduction to Micro and Macro Economics
Mathematical Logic
Mathematical Logic
Matrices
- Determinant of a Matrix
- Types of Matrices
- Algebra of Matrices
- Properties of Matrices
- Elementary Transformations
- Inverse of Matrix
- Application of Matrices
- Properties of Transpose of a Matrix
Differentiation
- Derivatives of Composite Functions - Chain Rule
- Derivatives of Inverse Functions
- Derivatives of Logarithmic Functions
- Derivatives of Implicit Functions
- Derivatives of Parametric Functions
- Second Order Derivative
Applications of Derivatives
- Introduction of Derivatives
- Increasing and Decreasing Functions
- Maxima and Minima
- Application of Derivatives to Economics
Integration
Definite Integration
- Fundamental Theorem of Integral Calculus
- Properties of Definite Integrals
Applications of Definite Integration
- Standard Forms of Parabola and Their Shapes
- Standard Forms of Ellipse
- Area Under Simple Curves
Differential Equation and Applications
- Differential Equations
- Order and Degree of a Differential Equation
- Formation of Differential Equation by Eliminating Arbitary Constant
- Differential Equations with Variables Separable Method
- Homogeneous Differential Equations
- Linear Differential Equations
- Application of Differential Equations
Matrices
Commission, Brokerage and Discount
- Commission and Brokerage Agent
- Discount
Insurance and Annuity
- Concept of Insurance
- Fire Insurance
- Accident Insurance
- Marine Insurance
- Annuity
Linear Regression
- Regression
- Types of Linear Regression
- Fitting Simple Linear Regression
- The Method of Least Squares
- Lines of Regression of X on Y and Y on X Or Equation of Line of Regression
- Properties of Regression Coefficients
Time Series
- Introduction to Time Series
- Uses of Time Series Analysis
- Components of a Time Series
- Mathematical Models
- Measurement of Secular Trend
Index Numbers
- Index Numbers
- Types of Index Numbers
- Index Numbers - Terminology and Notation
- Construction of Index Numbers
- Simple Aggregate Method
- Weighted Aggregate Method
- Cost of Living Index Number
- Method of Constructing Cost of Living Index Numbers - Aggregative Expenditure Method
- Method of Constructing Cost of Living Index Numbers - Family Budget Method
- Uses of Cost of Living Index Number
Linear Programming
- Introduction of Linear Programming
- Linear Programming Problem (L.P.P.)
- Mathematical Formulation of Linear Programming Problem
Assignment Problem and Sequencing
- Assignment Problem
- Hungarian Method of Solving Assignment Problem
- Special Cases of Assignment Problem
- Sequencing Problem
- Types of Sequencing Problem
- Finding an Optimal Sequence
Probability Distributions
- Mean of a Random Variable
- Types of Random Variables
- Random Variables and Its Probability Distributions
- Probability Distribution of Discrete Random Variables
- Probability Distribution of a Continuous Random Variable
- Binomial Distribution
- Bernoulli Trial
- Mean of Binomial Distribution (P.M.F.)
- Variance of Binomial Distribution (P.M.F.)
- Poisson Distribution
- Expected Value and Variance of a Random Variable
Continuity
Differentiation
Applications of Derivative
Indefinite Integration
- Definition of an Integral
- Integral of Standard Functions
- Rules of Integration
- Methods of Integration
- Integration by Parts
Definite Integrals
Ratio, Proportion and Partnership
Commission, Brokerage and Discount
Insurance and Annuity
- Insurance and Annuity
Demography
- Concept of Demography
- Uses of Vital Statistics in Demography
- Measurements of Mortality
- Life Tables
Bivariate Data and Correlation
Regression Analysis Introduction
- Lines of Regression of X on Y and Y on X Or Equation of Line of Regression
- Regression Coefficient of X on Y and Y on X
- Regression Propertise
Random Variable and Probability Distribution
Management Mathematics
- Inequations in Management Mathematics
- Linear Programming Problem in Management Mathematics
- Assignment Problem
- Sequencing in Management Mathematics
- Definition and formulation
- Solution of assignment problems (Hungarian Method)
Shaalaa.com | Assignment Problem
Related QuestionsVIEW ALL [55]
In a factory there are six jobs to be performed each of which should go through two machines A and B in the order A - B. The processing timing (in hours) for the jobs arc given here. You are required to determine the sequence for performing the jobs that would minimize the total elapsed time T. What is the value of T? Also find the idle time for machines · A and B.
Jobs | J1 | J2 | J3 | J4 | J5 | J6 |
Machine A | 1 | 3 | 8 | 5 | 6 | 3 |
MAchine B | 5 | 6 | 3 | 2 | 2 | 10 |
Solve the following maximal assignment problem :
Branch Manager | Monthly Business ( Rs. lakh) | |||
A | B | C | D | |
P | 11 | 11 | 9 | 9 |
Q | 13 | 16 | 11 | 10 |
R | 12 | 17 | 13 | 8 |
S | 16 | 14 | 16 | 12 |
Solve the following problem :
A dairy plant has five milk tankers, I, II, III, IV and V. These milk tankers are to be used on five delivery routes A, B, C, D and E. The distances (in kms) between the dairy plant and the delivery routes are given in the following distance matrix.
I | II | III | IV | V | |
A | 150 | 120 | 175 | 180 | 200 |
B | 125 | 110 | 120 | 150 | 165 |
C | 130 | 100 | 145 | 160 | 175 |
D | 40 | 40 | 70 | 70 | 100 |
E | 45 | 25 | 60 | 70 | 95 |
How should the milk tankers be assigned to the chilling center so as to minimize the distance travelled?
A computer centre has got three expert programmers. The centre needs three application programmes to be developed. The head of the computer centre, after studying carefully the programmes to be developed, estimates the computer time in minitues required by the experts to the application programme as follows.
Programmers | ||||
P | Q | R | ||
Programmers | 1 | 120 | 100 | 80 |
2 | 80 | 90 | 110 | |
3 | 110 | 140 | 120 |
Assign the programmers to the programme in such a way that the total computer time is least.
A job production unit has four jobs P, Q, R, and S which can be manufactured on each of the four machines I, II, III, and IV. The processing cost of each job for each machine is given in the following table:
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 31 | 25 | 33 | 29 |
Q | 25 | 24 | 23 | 21 |
R | 19 | 21 | 23 | 24 |
S | 38 | 36 | 34 | 40 |
Find the optimal assignment to minimize the total processing cost.