हिंदी

Solve the following problem : A dairy plant has five milk tankers, I, II, III, IV and V. These milk tankers are to be used on five delivery routes A, B, C, D and E. The distances (in kms) between the - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

A dairy plant has five milk tankers, I, II, III, IV and V. These milk tankers are to be used on five delivery routes A, B, C, D and E. The distances (in kms) between the dairy plant and the delivery routes are given in the following distance matrix.

  I II III IV V
A 150 120 175 180 200
B 125 110 120 150 165
C 130 100 145 160 175
D 40 40 70 70 100
E 45 25 60 70 95

How should the milk tankers be assigned to the chilling center so as to minimize the distance travelled?

सारिणी
योग

उत्तर

Step 1: Row minimum

Subtract the smallest element in each row from every element in its row.

The matrix obtained is given below:

  I II III IV V
A 30 0 55 60 80
B 15 0 10 40 55
C 30 0 45 60 75
D 0 0 30 30 60
E 20 0 35 45 70

Step 2: Column minimum

Subtract the smallest element in each column of assignment matrix obtained in step 1 from every element in its column.

  I II III IV V
A 30 0 45 30 25
B 15 0 0 10 0
C 30 0 35 30 20
D 0 0 20 0 5
E 20 0 25 15 15

Step 3:

Draw minimum number of vertical and horizontal lines to cover all zeros. 

First cover all rows and columns which have maximum number of zeros.

  I II III IV V
A 30 0 45 30 25
B 15 0 0 10 0
C 30 0 35 30 20
D 0 0 20 0 5
E 20 0 25 15 15

Step 4:

From step 3, minimum number of lines covering all the zeros are 3, which is less than order of matrix, i.e., 5.

∴  Select smallest element from all the uncovered elements, i.e., 15 and subtract it from all the uncovered elements and add it to the elements which lie at the intersection of two lines.

  I II III IV V
A 15 0 30 15 10
B 15 15 0 10 0
C 15 0 20 15 5
D 0 15 20 0 5
E 5 0 10 0 0

Step 5:

Draw minimum number of vertical and horizontal lines to cover all zeros.

  I II III IV V
A 15 0 30 15 10
B 15 15 0 10 0
C 15 0 20 15 5
D 0 15 20 0 5
E 5 0 10 0 0

Step 6:

From step 5, minimum number of lines covering all the zeros are 4, which is less than order of matrix, i.e., 5.

∴ Select smallest element from all the uncovered elements, i.e., 5 and subtract it from all the uncovered elements and add it to the elements which lie at the intersection of two lines.

  I II III IV V
A 10 0 25 10 5
B 15 20 0 10 0
C 10 0 15 10 0
D 0 20 20 0 5
E 5 5 10 0 0

Step 7:

Draw minimum number of vertical and horizontal lines to cover all zeros.

  I II III IV V
A 10 0 25 10 5
B 15 20 0 10 0
C 10 0 15 10 0
D 0 20 20 0 5
E 5 5 10 0 0

Step 8:

From step 7, minimum number of lines covering all the zeros are 5, which is equal to order of the matrix, i.e., 5.

∴ Select a row with exactly one zero, enclose that zero in () and cross out all zeros in its respective column.

Similarly, examine each row and column and mark the assignment ().

The matrix obtained is as follows:

  I II III IV V
A 10 0 25 10 5
B 15 20 0 10 0
C 10 0 15 10 0
D 0 20 20 0 5
E 5 5 10 0 0

Step 9:

The matrix obtained in step 8 contains exactly one assignment for each row and column.

Optimal assignment schedule is as follows:

Routes Dairy Plant Distance (kms)
A II 120
B III 120
C V 175
D I 40
E IV 70
    525

∴ Minimum distance travelled

= 120 + 120 + 175 + 40 + 70

= 525 kms.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Assignment Problem and Sequencing - Part I [पृष्ठ १२८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Assignment Problem and Sequencing
Part I | Q 2 | पृष्ठ १२८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Determine `l_92 and l_93, "given that"  l_91 = 97, d_91 = 38 and q_92 = 27/59`


Solve the following minimal assignment problem and hence find minimum time where  '- ' indicates that job cannot be assigned to the machine : 

Machines Processing time in hours
A B C D E
M1 9 11 15 10 11
M2 12 9 - 10 9
M3 - 11 14 11 7
M4 14 8 12 7 8

In a factory there are six jobs to be performed each of which should go through two machines A and B in the order A - B. The processing timing (in hours) for the jobs arc given here. You are required to determine the sequence for performing the jobs that would minimize the total elapsed time T. What is the value of T? Also find the idle time for machines · A and B.

Jobs J1 J2 J3 J4 J5 J6
Machine A 1 3 8 5 6 3
MAchine B 5 6 3 2 2 10

A job production unit has four jobs A, B, C, D which can be manufactured on each of the four machines P, Q, R and S. The processing cost of each job for each machine is given in the following table:

Jobs Machines
(Processing Cost in ₹)
P Q R S
A 31 25 33 29
B 25 24 23 21
C 19 21 23 24
D 38 36 34 40

Find the optimal assignment to minimize the total processing cost.


Five wagons are available at stations 1, 2, 3, 4, and 5. These are required at 5 stations I, II, III, IV, and V. The mileage between various stations are given in the table below. How should the wagons be transported so as to minimize the mileage covered?

  I II III IV V
1 10 5 9 18 11
2 13 9 6 12 14
3 3 2 4 4 5
4 18 9 12 17 15
5 11 6 14 19 10

Five different machines can do any of the five required jobs, with different profits resulting from each assignment as shown below:

Job Machines (Profit in ₹)
A B C D E
1 30 37 40 28 40
2 40 24 27 21 36
3 40 32 33 30 35
4 25 38 40 36 36
5 29 62 41 34 39

Find the optimal assignment schedule.


The assignment problem is said to be balanced if ______.


Choose the correct alternative :

The assignment problem is said to be balanced if it is a ______.


The objective of an assignment problem is to assign ______. 


Fill in the blank :

When an assignment problem has more than one solution, then it is _______ optimal solution.


State whether the following is True or False :

It is not necessary to express an assignment problem into n x n matrix.


Solve the following problem :

A plant manager has four subordinates, and four tasks to be performed. The subordinates differ in efficiency and the tasks differ in their intrinsic difficulty. This estimate of the time each man would take to perform each task is given in the effectiveness matrix below.

  I II III IV
A 7 25 26 10
B 12 27 3 25
C 37 18 17 14
D 18 25 23 9

How should the tasks be allocated, one to a man, as to minimize the total man hours?


Choose the correct alternative:

The assignment problem is generally defined as a problem of ______


Choose the correct alternative:

When an assignment problem has more than one solution, then it is ______


If the given matrix is ______ matrix, the assignment problem is called balanced problem


State whether the following statement is True or False:

The objective of an assignment problem is to assign number of jobs to equal number of persons at maximum cost


State whether the following statement is True or False:

In assignment problem, if number of columns is greater than number of rows, then a dummy row is added


Give mathematical form of Assignment problem


What is the difference between Assignment Problem and Transportation Problem?


Three jobs A, B and C one to be assigned to three machines U, V and W. The processing cost for each job machine combination is shown in the matrix given below. Determine the allocation that minimizes the overall processing cost.

    Machine
    U V W
Jobs A 17 25 31
B 10 25 16
C 12 14 11

(cost is in ₹ per unit)


A computer centre has got three expert programmers. The centre needs three application programmes to be developed. The head of the computer centre, after studying carefully the programmes to be developed, estimates the computer time in minitues required by the experts to the application programme as follows.

  Programmers
    P Q R
Programmers 1 120 100 80
  2 80 90 110
  3 110 140 120

Assign the programmers to the programme in such a way that the total computer time is least.


Find the optimal solution for the assignment problem with the following cost matrix.

    Area
    1 2 3 4
  P 11 17 8 16
Salesman Q 9 7 12 6
  R 13 16 15 12
  S 14 10 12 11

Assign four trucks 1, 2, 3 and 4 to vacant spaces A, B, C, D, E and F so that distance travelled is minimized. The matrix below shows the distance.

  1 2 3 4
A 4 7 3 7
B 8 2 5 5
C 4 9 6 9
D 7 5 4 8
E 6 3 5 4
F 6 8 7 3

Choose the correct alternative:

Number of basic allocation in any row or column in an assignment problem can be


Choose the correct alternative:

The purpose of a dummy row or column in an assignment problem is to


Choose the correct alternative:

The solution for an assignment problem is optimal if


A natural truck-rental service has a surplus of one truck in each of the cities 1, 2, 3, 4, 5 and 6 and a deficit of one truck in each of the cities 7, 8, 9, 10, 11 and 12. The distance(in kilometers) between the cities with a surplus and the cities with a deficit are displayed below:

    To
    7 8 9 10 11 12
From 1 31 62 29 42 15 41
2 12 19 39 55 71 40
3 17 29 50 41 22 22
4 35 40 38 42 27 33
5 19 30 29 16 20 33
6 72 30 30 50 41 20

How should the truck be dispersed so as to minimize the total distance travelled?


A job production unit has four jobs P, Q, R, and S which can be manufactured on each of the four machines I, II, III, and IV. The processing cost of each job for each machine is given in the following table:

Job Machines
(Processing cost in ₹)
I II III IV
P 31 25 33 29
Q 25 24 23 21
R 19 21 23 24
S 38 36 34 40

Find the optimal assignment to minimize the total processing cost.


A job production unit has four jobs P, Q, R, S which can be manufactured on each of the four machines I, II, III and IV. The processing cost of each job for each machine is given in the following table :

Job Machines
(Processing cost in ₹)
I II III IV
P 31 25 33 29
Q 25 24 23 21
R 19 21 23 24
S 38 36 34 40

Complete the following activity to find the optimal assignment to minimize the total processing cost.

Solution:

Step 1: Subtract the smallest element in each row from every element of it. New assignment matrix is obtained as follows :

Job Machines
(Processing cost in ₹)
I II III IV
P 6 0 8 4
Q 4 3 2 0
R 0 2 4 5
S 4 2 0 6

Step 2: Subtract the smallest element in each column from every element of it. New assignment matrix is obtained as above, because each column in it contains one zero.

Step 3: Draw minimum number of vertical and horizontal lines to cover all zeros:

Job Machines
(Processing cost in ₹)
I II III IV
P 6 0 8 4
Q 4 3 2 0
R 0 2 4 5
S 4 2 0 6

Step 4: From step 3, as the minimum number of straight lines required to cover all zeros in the assignment matrix equals the number of rows/columns. Optimal solution has reached.

Examine the rows one by one starting with the first row with exactly one zero is found. Mark the zero by enclosing it in (`square`), indicating assignment of the job. Cross all the zeros in the same column. This step is shown in the following table :

Job Machines
(Processing cost in ₹)
I II III IV
P 6 0 8 4
Q 4 3 2 0
R 0 2 4 5
S 4 2 0 6

Step 5: It is observed that all the zeros are assigned and each row and each column contains exactly one assignment. Hence, the optimal (minimum) assignment schedule is :

Job Machine Min.cost
P II `square`
Q `square` 21
R I `square`
S III 34

Hence, total (minimum) processing cost = 25 + 21 + 19 + 34 = ₹`square`


A plant manager has four subordinates and four tasks to perform. The subordinates differ in efficiency and task differ in their intrinsic difficulty. Estimates of the time subordinate would take to perform tasks are given in the following table:

  I II III IV
A 3 11 10 8
B 13 2 12 2
C 3 4 6 1
D 4 15 4 9

Complete the following activity to allocate tasks to subordinates to minimize total time.

Solution:

Step I: Subtract the smallest element of each row from every element of that row:

  I II III IV
A 0 8 7 5
B 11 0 10 0
C 2 3 5 0
D 0 11 0 5

Step II: Since all column minimums are zero, no need to subtract anything from columns.

Step III: Draw the minimum number of lines to cover all zeros.

  I II III IV
A 0 8 7 5
B 11 0 10 0
C 2 3 5 0
D 0 11 0 5

Since minimum number of lines = order of matrix, optimal solution has been reached

Optimal assignment is A →`square`  B →`square`

C →IV  D →`square`

Total minimum time = `square` hours.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×