Advertisements
Advertisements
प्रश्न
{a, e} ⊂ {x : x is a vowel in the English alphabet}
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
Let A = {a, e} and B = {x : x is a vowel in the English alphabet}
∴ B = {a, e, i, o, u}
Here, every element of A is an element of B.
APPEARS IN
संबंधित प्रश्न
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{2, 3, 4} _____ {1, 2, 3, 4, 5}
Write down all the subsets of the following set:
{a}
Write the following as intervals: {x: x ∈ R, –12 < x < –10}
Write the following as intervals: {x : x ∈ R, 3 ≤ x ≤ 4}
Write the given intervals in set-builder form:
(–3, 0)
Write the following interval in set-builder form:
(6, 12]
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If x ∈ A and A ∈ B, then x ∈ B
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and B ⊂ C, then A ⊂ C
If a set contains n elements, then write the number of elements in its power set.
Let A = {x : x ∈ N, x is a multiple of 3} and B = {x : x ∈ N and x is a multiple of 5}. Write \[A \cap B\]
Let A and B be two sets having 4 and 7 elements respectively. Then write the maximum number of elements that \[A \cup B\] can have.
If \[A = \left\{ \left( x, y \right) : y = \frac{1}{x}, 0 \neq x \in R \right\}\]and\[B = \left\{ \left( x, y \right) : y = - x, x \in R \right\}\] then write\[A \cap B\]
The number of subsets of a set containing n elements is
For any two sets A and B,\[A \cap \left( A \cup B \right) =\]
If A = |1, 2, 3, 4, 5|, then the number of proper subsets of A is
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is a student of Class XI of your school} ____ {x : x student of your school}
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is an even natural number} _____ {x : x is an integer}
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{3, 4} ∈ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
1 ∈ A
Let A = { 1, 2, { 3, 4}, 5 }. The following statement is correct or incorrect and why?
1 ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{1, 2, 3} ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{Φ} ⊂ A
Write the following interval in Set-Builder form:
(– 3, 0)
Given that N = {1, 2, 3, ..., 100}, then write the subset A of N, whose element are odd numbers.
Given that N = {1, 2, 3, ..., 100}, then write the subset B of N, whose element are represented by x + 2, where x ∈ N.
State true or false for the following statement given below:
Q ∩ R = Q, where Q is the set of rational numbers and R is the set of real numbers.
Given that N = {1, 2, 3, ... , 100}. Then write the subset of N whose elements are even numbers.
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by 4n
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a ∈ Y but a2 ∉ Y
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a + 1 = 6, a ∈ Y
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a is less than 6 and a ∈ Y
Suppose A1, A2, ..., A30 are thirty sets each having 5 elements and B1, B2, ..., Bn are n sets each with 3 elements, let \[\bigcup\limits_{i=1}^{30} A_{i} = \bigcup\limits_{j=1}^{n} B_{j}\] = and each element of S belongs to exactly 10 of the Ai’s and exactly 9 of the B,’S. then n is equal to ______.
State True or False for the following statement.
Given that M = {1, 2, 3, 4, 5, 6, 7, 8, 9} and if B = {1, 2, 3, 4, 5, 6, 7, 8, 9}, then B ⊄ M.
State True or False for the following statement.
The sets {1, 2, 3, 4} and {3, 4, 5, 6} are equal.
State True or False for the following statement.
Q ∪ Z = Q, where Q is the set of rational numbers and Z is the set of integers.