Advertisements
Advertisements
प्रश्न
Let A = { 1, 2, { 3, 4}, 5 }. The following statement is correct or incorrect and why?
1 ⊂ A
विकल्प
Incorrect
Correct
उत्तर
This statement is incorrect.
Explanation:
1 is not a set, it is a member of set A.
APPEARS IN
संबंधित प्रश्न
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{2, 3, 4} _____ {1, 2, 3, 4, 5}
{a, b} ⊄ {b, c, a}
{x : x is an even natural number less than 6} ⊂ {x : x is a natural number which divides 36}
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{3, 4} ⊂ A
How many elements has P(A), if A = Φ?
Write the given intervals in set-builder form:
(–3, 0)
Write the given intervals in set-builder form:
[6, 12]
Write the following interval in set-builder form:
[–23, 5)
If \[A = \left\{ \left( x, y \right) : y = \frac{1}{x}, 0 \neq x \in R \right\}\]and\[B = \left\{ \left( x, y \right) : y = - x, x \in R \right\}\] then write\[A \cap B\]
If \[A = \left\{ \left( x, y \right) : y = e^x , x \in R \right\} and B = \left\{ \left( x, y \right) : y = e^{- x} , x \in R \right\}\]write\[A \cap B\]
If A and B are two sets such that \[n \left( A \right) = 20, n \left( B \right) = 25\]\text{ and } \[n \left( A \cup B \right) = 40\], then write \[n \left( A \cap B \right)\]
For any two sets A and B,\[A \cap \left( A \cup B \right) =\]
In set-builder method the null set is represented by
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is a triangle in a plane} _____ {x : x is a rectangle in the plane}
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is an equilateral triangle in a plane} _____ {x : x is a triangle in the same plane}
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{1, 2, 3} ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
Φ ∈ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
Φ ⊂ A
Write the following interval in Set-Builder form:
(– 3, 0)
Given that N = {1, 2, 3, ..., 100}, then write the subset B of N, whose element are represented by x + 2, where x ∈ N.
State true or false for the following statement given below:
Let R and S be the sets defined as follows:
R = {x ∈ Z | x is divisible by 2}
S = {y ∈ Z | y is divisible by 3}
then R ∩ S = φ
State true or false for the following statement given below:
Q ∩ R = Q, where Q is the set of rational numbers and R is the set of real numbers.
Given that N = {1, 2, 3, ... , 100}. Then write the subset of N whose elements are even numbers.
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by 4n
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by n + 6
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by `n/2`
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by n – 1
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a ∈ Y but a2 ∉ Y
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a + 1 = 6, a ∈ Y
State True or False for the following statement.
Given that M = {1, 2, 3, 4, 5, 6, 7, 8, 9} and if B = {1, 2, 3, 4, 5, 6, 7, 8, 9}, then B ⊄ M.
State True or False for the following statement.
The sets {1, 2, 3, 4} and {3, 4, 5, 6} are equal.