हिंदी

In Set-builder Method the Null Set is Represented by - Mathematics

Advertisements
Advertisements

प्रश्न

In set-builder method the null set is represented by

विकल्प

  • (a) { }

  • (b) Φ

  • (c) \[\left| x : x \neq x \right|\]

  • (d) \[\left| x : x = x \right|\]

MCQ

उत्तर

(c) \[\left\{ x: x \neq x \right\}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Sets - Exercise 1.10 [पृष्ठ ५०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 1 Sets
Exercise 1.10 | Q 15 | पृष्ठ ५०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{2, 3, 4} _____ {1, 2, 3, 4, 5}


{a, e} ⊂ {x : x is a vowel in the English alphabet}


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{3, 4} ⊂ A


Write the following as interval:

{x : x ∈ R, – 4 < x ≤ 6}


Write the following as intervals:  {x: x ∈ R, –12 < x < –10}


Write the given intervals in set-builder form:

(–3, 0)


Write the given intervals in set-builder form:

[6, 12]


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If A ⊂ B and B ⊂ C, then A ⊂ C


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If A ⊄ B and B ⊄ C, then A ⊄ C


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If x ∈ A and A ⊄ B, then x ∈ B


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If A ⊂ B and x ∉ B, then x ∉ A


If a set contains n elements, then write the number of elements in its power set. 


Write the number of elements in the power set of null set. 


Let A = {x : x ∈ Nx is a multiple of 3} and B = {x : x ∈ N and x is a multiple of 5}. Write \[A \cap B\] 


If A = {x ∈ C : x2 = 1} and B = {x ∈ C : x4 = 1}, then write A − B and B − A


Let A and B be two sets having 4 and 7 elements respectively. Then write the maximum number of elements that \[A \cup B\] can have. 


If \[A = \left\{ \left( x, y \right) : y = e^x , x \in R \right\} and B = \left\{ \left( x, y \right) : y = e^{- x} , x \in R \right\}\]write\[A \cap B\] 


The number of subsets of a set containing n elements is 


For any two sets A and B,\[A \cap \left( A \cup B \right) =\]


If A = {1, 3, 5, B} and B = {2, 4}, then 


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{x : x is a circle in the plane} _____ {x : x is a circle in the same plane with radius 1 unit}


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{x : x is an even natural number} _____ {x : x is an integer}


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{3, 4} ∈ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{{3, 4}} ⊂ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{1, 2, 5} ∈ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{1, 2, 3} ⊂ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

Φ ∈ A


Write the following interval in Set-Builder form:

(– 3, 0)


Given that N = {1, 2, 3, ..., 100}, then write the subset A of N, whose element are odd numbers.


State true or false for the following statement given below:

Let R and S be the sets defined as follows:
R = {x ∈ Z | x is divisible by 2}
S = {y ∈ Z | y is divisible by 3}
then R ∩ S = φ


State true or false for the following statement given below:

Q ∩ R = Q, where Q is the set of rational numbers and R is the set of real numbers.


If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.

a ∈ Y but a2 ∉ Y


If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.

a + 1 = 6, a ∈ Y


State True or False for the following statement.

The sets {1, 2, 3, 4} and {3, 4, 5, 6} are equal.


State True or False for the following statement.

Q ∪ Z = Q, where Q is the set of rational numbers and Z is the set of integers.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×