Advertisements
Advertisements
Question
In set-builder method the null set is represented by
Options
(a) { }
(b) Φ
(c) \[\left| x : x \neq x \right|\]
(d) \[\left| x : x = x \right|\]
Solution
(c) \[\left\{ x: x \neq x \right\}\]
APPEARS IN
RELATED QUESTIONS
{a, e} ⊂ {x : x is a vowel in the English alphabet}
{x : x is an even natural number less than 6} ⊂ {x : x is a natural number which divides 36}
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{3, 4} ⊂ A
Write the following as intervals: {x: x ∈ R, –12 < x < –10}
Decide, among the following sets, which sets are subsets of one and another:
A = {x : x ∈ R and x satisfy x2 – 8x + 12 = 0},
B = {2, 4, 6}, C = {2, 4, 6, 8, …}, D = {6}.
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and B ⊂ C, then A ⊂ C
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If x ∈ A and A ⊄ B, then x ∈ B
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and x ∉ B, then x ∉ A
Let A = {x : x ∈ N, x is a multiple of 3} and B = {x : x ∈ N and x is a multiple of 5}. Write \[A \cap B\]
Let A and B be two sets having 3 and 6 elements respectively. Write the minimum number of elements that \[A \cup B\]
If A and B are two sets such that \[A \subset B\], then write B' − A' in terms of A and B.
Let A and B be two sets having 4 and 7 elements respectively. Then write the maximum number of elements that \[A \cup B\] can have.
If \[A = \left\{ \left( x, y \right) : y = \frac{1}{x}, 0 \neq x \in R \right\}\]and\[B = \left\{ \left( x, y \right) : y = - x, x \in R \right\}\] then write\[A \cap B\]
If A and B are two sets such that \[n \left( A \right) = 20, n \left( B \right) = 25\]\text{ and } \[n \left( A \cup B \right) = 40\], then write \[n \left( A \cap B \right)\]
If A and B are two sets such that \[n \left( A \right) = 115, n \left( B \right) = 326, n \left( A - B \right) = 47,\] then write \[n \left( A \cup B \right)\]
For any two sets A and B,\[A \cap \left( A \cup B \right) =\]
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{a, b, c} _____ {b, c, d}
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is a circle in the plane} _____ {x : x is a circle in the same plane with radius 1 unit}
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is an even natural number} _____ {x : x is an integer}
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{{3, 4}} ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
1 ∈ A
Let A = { 1, 2, { 3, 4}, 5 }. The following statement is correct or incorrect and why?
1 ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{Φ} ⊂ A
Write down all the subsets of the following set:
Φ
Given that N = {1, 2, 3, ..., 100}, then write the subset A of N, whose element are odd numbers.
State true or false for the following statement given below:
Let R and S be the sets defined as follows:
R = {x ∈ Z | x is divisible by 2}
S = {y ∈ Z | y is divisible by 3}
then R ∩ S = φ
State true or false for the following statement given below:
Q ∩ R = Q, where Q is the set of rational numbers and R is the set of real numbers.
Given that N = {1, 2, 3, ... , 100}. Then write the subset of N whose element are perfect square numbers.
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by n – 1
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a ∈ Y but a2 ∉ Y
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a is less than 6 and a ∈ Y
State True or False for the following statement.
If A is any set, then A ⊂ A.
State True or False for the following statement.
Q ∪ Z = Q, where Q is the set of rational numbers and Z is the set of integers.