English

In Set-builder Method the Null Set is Represented by - Mathematics

Advertisements
Advertisements

Question

In set-builder method the null set is represented by

Options

  • (a) { }

  • (b) Φ

  • (c) \[\left| x : x \neq x \right|\]

  • (d) \[\left| x : x = x \right|\]

MCQ

Solution

(c) \[\left\{ x: x \neq x \right\}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Sets - Exercise 1.10 [Page 50]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 1 Sets
Exercise 1.10 | Q 15 | Page 50

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

{a, e} ⊂ {x : x is a vowel in the English alphabet}


{x : x is an even natural number less than 6} ⊂ {x : x is a natural number which divides 36}


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{3, 4} ⊂ A


Write the following as intervals:  {x: x ∈ R, –12 < x < –10}


Decide, among the following sets, which sets are subsets of one and another:

A = {x : x ∈ R and x satisfy x2 – 8x + 12 = 0},

B = {2, 4, 6}, C = {2, 4, 6, 8, …}, D = {6}.


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If A ⊂ B and B ⊂ C, then A ⊂ C


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If x ∈ A and A ⊄ B, then x ∈ B


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If A ⊂ B and x ∉ B, then x ∉ A


Let A = {x : x ∈ Nx is a multiple of 3} and B = {x : x ∈ N and x is a multiple of 5}. Write \[A \cap B\] 


Let A and B be two sets having 3 and 6 elements respectively. Write the minimum number of elements that \[A \cup B\] 


If A and B are two sets such that \[A \subset B\], then write B' − A' in terms of A and B.


Let A and B be two sets having 4 and 7 elements respectively. Then write the maximum number of elements that \[A \cup B\] can have. 


If \[A = \left\{ \left( x, y \right) : y = \frac{1}{x}, 0 \neq x \in R \right\}\]and\[B = \left\{ \left( x, y \right) : y = - x, x \in R \right\}\] then write\[A \cap B\]


If A and B are two sets such that \[n \left( A \right) = 20, n \left( B \right) = 25\]\text{ and } \[n \left( A \cup B \right) = 40\], then write \[n \left( A \cap B \right)\] 


If A and B are two sets such that \[n \left( A \right) = 115, n \left( B \right) = 326, n \left( A - B \right) = 47,\] then write \[n \left( A \cup B \right)\] 


For any two sets A and B,\[A \cap \left( A \cup B \right) =\]


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{a, b, c} _____ {b, c, d}


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{x : x is a circle in the plane} _____ {x : x is a circle in the same plane with radius 1 unit}


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{x : x is an even natural number} _____ {x : x is an integer}


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{{3, 4}} ⊂ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

1 ∈ A


Let A = { 1, 2, { 3, 4}, 5 }. The following statement is correct or incorrect and why?

1 ⊂ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{Φ} ⊂ A


Write down all the subsets of the following set:

Φ


Given that N = {1, 2, 3, ..., 100}, then write the subset A of N, whose element are odd numbers.


State true or false for the following statement given below:

Let R and S be the sets defined as follows:
R = {x ∈ Z | x is divisible by 2}
S = {y ∈ Z | y is divisible by 3}
then R ∩ S = φ


State true or false for the following statement given below:

Q ∩ R = Q, where Q is the set of rational numbers and R is the set of real numbers.


Given that N = {1, 2, 3, ... , 100}. Then write the subset of N whose element are perfect square numbers.


If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by n – 1


If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.

a ∈ Y but a2 ∉ Y


If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.

a is less than 6 and a ∈ Y


State True or False for the following statement.

If A is any set, then A ⊂ A.


State True or False for the following statement.

Q ∪ Z = Q, where Q is the set of rational numbers and Z is the set of integers.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×