English

{x : x is an even natural number less than 6} ⊂ {x : x is a natural number which divides 36} - Mathematics

Advertisements
Advertisements

Question

{x : x is an even natural number less than 6} ⊂ {x : x is a natural number which divides 36}

Options

  • True

  • False

MCQ
True or False

Solution

This statement is True.

Explanation:

Let A = {x : x is an even natural number less than 6}

∴ A = {2, 4} and B = {x : x is a natural number which divides 36}

B = {1, 2, 3, 4, 6, 9, 12, 18, 36}

Here, every element of A is an element of B.

∴ A ⊂ B

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Sets - Exercise 1.3 [Page 13]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 1 Sets
Exercise 1.3 | Q 2.6 | Page 13

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

{a} ∈ (a, b, c)


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{3, 4} ⊂ A


Write down all the subsets of the following set:

{a}


How many elements has P(A), if A = Φ?


Write the following as interval:

{x : x ∈ R, – 4 < x ≤ 6}


Write the following as intervals: {x : x ∈ R, 0 ≤ x < 7}


Write the following as intervals: {x : x ∈ R, 3 ≤ x ≤ 4}


Write the following interval in set-builder form:

[–23, 5)


Decide, among the following sets, which sets are subsets of one and another:

A = {x : x ∈ R and x satisfy x2 – 8x + 12 = 0},

B = {2, 4, 6}, C = {2, 4, 6, 8, …}, D = {6}.


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If A ⊂ B and B ∈ C, then A ∈ C


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If A ⊂ B and B ⊂ C, then A ⊂ C


Let A and B be two sets having 3 and 6 elements respectively. Write the minimum number of elements that \[A \cup B\] 


Let A and B be two sets having 4 and 7 elements respectively. Then write the maximum number of elements that \[A \cup B\] can have. 


If A and B are two sets such that \[n \left( A \right) = 115, n \left( B \right) = 326, n \left( A - B \right) = 47,\] then write \[n \left( A \cup B \right)\] 


The number of subsets of a set containing n elements is 


For any two sets A and B,\[A \cap \left( A \cup B \right) =\]


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{a, b, c} _____ {b, c, d}


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{x : x is a circle in the plane} _____ {x : x is a circle in the same plane with radius 1 unit}


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{x : x is a triangle in a plane} _____ {x : x is a rectangle in the plane}


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{x : x is an even natural number} _____ {x : x is an integer}


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{3, 4} ∈ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{{3, 4}} ⊂ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{1, 2, 5} ∈ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{1, 2, 3} ⊂ A


Write the following interval in Set-Builder form:

(– 3, 0)


Given that N = {1, 2, 3, ..., 100}, then write the subset A of N, whose element are odd numbers.


Given that N = {1, 2, 3, ..., 100}, then write the subset B of N, whose element are represented by x + 2, where x ∈ N.


State true or false for the following statement given below:

Q ∩ R = Q, where Q is the set of rational numbers and R is the set of real numbers.


Given that N = {1, 2, 3, ... , 100}. Then write the subset of N whose elements are even numbers.


If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by n + 6


If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by `n/2`


If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.

a is less than 6 and a ∈ Y


If X = {8n – 7n – 1 | n ∈ N} and Y = {49n – 49 | n ∈ N}. Then ______.


State True or False for the following statement.

The sets {1, 2, 3, 4} and {3, 4, 5, 6} are equal.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×