Advertisements
Advertisements
Question
{a} ∈ (a, b, c)
Options
True
False
Solution
This statement is False.
{a} is not an element of the set {a, b, c}. The elements of {a, b, c} are a, b, c. Therefore, {a} ∉ {a, b, c}.
APPEARS IN
RELATED QUESTIONS
{1, 2, 3} ⊂ {1, 3, 5}
{x : x is an even natural number less than 6} ⊂ {x : x is a natural number which divides 36}
Write the following as intervals: {x : x ∈ R, 3 ≤ x ≤ 4}
Write the given intervals in set-builder form:
[6, 12]
Write the following interval in set-builder form:
(6, 12]
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If x ∈ A and A ∈ B, then x ∈ B
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and B ∈ C, then A ∈ C
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊄ B and B ⊄ C, then A ⊄ C
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If x ∈ A and A ⊄ B, then x ∈ B
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and x ∉ B, then x ∉ A
Let A = {x : x ∈ N, x is a multiple of 3} and B = {x : x ∈ N and x is a multiple of 5}. Write \[A \cap B\]
Let A and B be two sets having 3 and 6 elements respectively. Write the minimum number of elements that \[A \cup B\]
Let A and B be two sets having 4 and 7 elements respectively. Then write the maximum number of elements that \[A \cup B\] can have.
If A and B are two sets such that \[n \left( A \right) = 20, n \left( B \right) = 25\]\text{ and } \[n \left( A \cup B \right) = 40\], then write \[n \left( A \cap B \right)\]
If A = {1, 3, 5, B} and B = {2, 4}, then
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is a circle in the plane} _____ {x : x is a circle in the same plane with radius 1 unit}
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is an even natural number} _____ {x : x is an integer}
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{{3, 4}} ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
1 ∈ A
Let A = { 1, 2, { 3, 4}, 5 }. The following statement is correct or incorrect and why?
1 ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{1, 2, 5} ∈ A
Given that N = {1, 2, 3, ..., 100}, then write the subset A of N, whose element are odd numbers.
State true or false for the following statement given below:
Let R and S be the sets defined as follows:
R = {x ∈ Z | x is divisible by 2}
S = {y ∈ Z | y is divisible by 3}
then R ∩ S = φ
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by 4n
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by n + 6
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by `n/2`
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by n – 1
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a ∈ Y but a2 ∉ Y
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a + 1 = 6, a ∈ Y
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a is less than 6 and a ∈ Y
If X = {8n – 7n – 1 | n ∈ N} and Y = {49n – 49 | n ∈ N}. Then ______.
State True or False for the following statement.
If A is any set, then A ⊂ A.
State True or False for the following statement.
The sets {1, 2, 3, 4} and {3, 4, 5, 6} are equal.