Advertisements
Advertisements
Question
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊄ B and B ⊄ C, then A ⊄ C
Options
True
False
Solution
This statement is False.
Explanation:
Take A = {1, 2} B = {2, 3}, C = {1, 2, 5}
Now A ⊄ B and B ⊄ C, but A ⊂ C.
APPEARS IN
RELATED QUESTIONS
{a, b} ⊄ {b, c, a}
{a} ⊂ {a. b, c}
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{3, 4} ⊂ A
Write down all the subsets of the following set:
{a}
Write the following as interval:
{x : x ∈ R, – 4 < x ≤ 6}
Write the following as intervals: {x: x ∈ R, –12 < x < –10}
Write the following as intervals: {x : x ∈ R, 3 ≤ x ≤ 4}
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and B ∈ C, then A ∈ C
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and B ⊂ C, then A ⊂ C
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If x ∈ A and A ⊄ B, then x ∈ B
Let A = {x : x ∈ N, x is a multiple of 3} and B = {x : x ∈ N and x is a multiple of 5}. Write \[A \cap B\]
If A = {x ∈ C : x2 = 1} and B = {x ∈ C : x4 = 1}, then write A − B and B − A.
If A and B are two sets such that \[A \subset B\], then write B' − A' in terms of A and B.
If \[A = \left\{ \left( x, y \right) : y = \frac{1}{x}, 0 \neq x \in R \right\}\]and\[B = \left\{ \left( x, y \right) : y = - x, x \in R \right\}\] then write\[A \cap B\]
If \[A = \left\{ \left( x, y \right) : y = e^x , x \in R \right\} and B = \left\{ \left( x, y \right) : y = e^{- x} , x \in R \right\}\]write\[A \cap B\]
For any two sets A and B,\[A \cap \left( A \cup B \right) =\]
If A = |1, 2, 3, 4, 5|, then the number of proper subsets of A is
In set-builder method the null set is represented by
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is an equilateral triangle in a plane} _____ {x : x is a triangle in the same plane}
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
1 ∈ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{1, 2, 5} ∈ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
Φ ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{Φ} ⊂ A
Write down all the subsets of the following set:
{a, b}
Write down all the subsets of the following set:
{1, 2, 3}
Write down all the subsets of the following set:
Φ
State true or false for the following statement given below:
Let R and S be the sets defined as follows:
R = {x ∈ Z | x is divisible by 2}
S = {y ∈ Z | y is divisible by 3}
then R ∩ S = φ
State true or false for the following statement given below:
Q ∩ R = Q, where Q is the set of rational numbers and R is the set of real numbers.
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by n + 6
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by n – 1
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a ∈ Y but a2 ∉ Y
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a + 1 = 6, a ∈ Y
State True or False for the following statement.
If A is any set, then A ⊂ A.