English

If a = {X ∈ C : X2 = 1} and B = {X ∈ C : X4 = 1}, Then Write a − B and B − A. - Mathematics

Advertisements
Advertisements

Question

If A = {x ∈ C : x2 = 1} and B = {x ∈ C : x4 = 1}, then write A − B and B − A

Solution

We have:
A = {x ∈ C : x2 = 1} 

\[\Rightarrow\] A = {\[-\]1, 1} 

And,
B = {x ∈ C : x4 = 1}

\[\Rightarrow\]= {\[x^4 - 1 = 0\] 

\[\Rightarrow\]B = {\[\left( x^2 - 1 \right)\left( x^2 + 1 \right)\]

\[\Rightarrow\]B = {\[-\]1, 1,\[-\]i, i}
Thus, we get:
A − B =\[\varnothing\]

And,
B − A = {\[-\]i, i}

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Sets - Exercise 1.09 [Page 49]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 1 Sets
Exercise 1.09 | Q 5 | Page 49

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{2, 3, 4} _____ {1, 2, 3, 4, 5}


{a, b} ⊄ {b, c, a}


{a} ⊂ {a. b, c}


{x : x is an even natural number less than 6} ⊂ {x : x is a natural number which divides 36}


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{3, 4} ⊂ A


Write down all the subsets of the following set:

{a}


Write the following as intervals: {x : x ∈ R, 0 ≤ x < 7}


Write the given intervals in set-builder form:

[6, 12]


Write the following interval in set-builder form:

[–23, 5)


Decide, among the following sets, which sets are subsets of one and another:

A = {x : x ∈ R and x satisfy x2 – 8x + 12 = 0},

B = {2, 4, 6}, C = {2, 4, 6, 8, …}, D = {6}.


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If A ⊂ B and B ∈ C, then A ∈ C


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If A ⊄ B and B ⊄ C, then A ⊄ C


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If x ∈ A and A ⊄ B, then x ∈ B


If A and B are two sets such that \[A \subset B\], then write B' − A' in terms of A and B.


If \[A = \left\{ \left( x, y \right) : y = e^x , x \in R \right\} and B = \left\{ \left( x, y \right) : y = e^{- x} , x \in R \right\}\]write\[A \cap B\] 


If A and B are two sets such that \[n \left( A \right) = 20, n \left( B \right) = 25\]\text{ and } \[n \left( A \cup B \right) = 40\], then write \[n \left( A \cap B \right)\] 


The number of subsets of a set containing n elements is 


For any two sets A and B,\[A \cap \left( A \cup B \right) =\]


If A = {1, 3, 5, B} and B = {2, 4}, then 


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{a, b, c} _____ {b, c, d}


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{x : x is a student of Class XI of your school} ____ {x : x student of your school}


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{x : x is a triangle in a plane} _____ {x : x is a rectangle in the plane}


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{1, 2, 5} ⊂ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{1, 2, 5} ∈ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

Φ ⊂ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{Φ} ⊂ A


Write down all the subsets of the following set:

{1, 2, 3}


Write the following interval in Set-Builder form:

(– 3, 0)


Given that N = {1, 2, 3, ..., 100}, then write the subset B of N, whose element are represented by x + 2, where x ∈ N.


State true or false for the following statement given below:

Let R and S be the sets defined as follows:
R = {x ∈ Z | x is divisible by 2}
S = {y ∈ Z | y is divisible by 3}
then R ∩ S = φ


If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by 4n


If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by `n/2`


If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.

a + 1 = 6, a ∈ Y


Suppose A1, A2, ..., A30 are thirty sets each having 5 elements and B1, B2, ..., Bn are n sets each with 3 elements, let \[\bigcup\limits_{i=1}^{30} A_{i} = \bigcup\limits_{j=1}^{n} B_{j}\] = and each element of S belongs to exactly 10 of the Ai’s and exactly 9 of the B,’S. then n is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×