Advertisements
Advertisements
Question
If A = {x ∈ C : x2 = 1} and B = {x ∈ C : x4 = 1}, then write A − B and B − A.
Solution
We have:
A = {x ∈ C : x2 = 1}
\[\Rightarrow\] A = {\[-\]1, 1}
And,
B = {x ∈ C : x4 = 1}
\[\Rightarrow\]= {\[x^4 - 1 = 0\]
\[\Rightarrow\]B = {\[\left( x^2 - 1 \right)\left( x^2 + 1 \right)\]
\[\Rightarrow\]B = {\[-\]1, 1,\[-\]i, i}
Thus, we get:
A − B =\[\varnothing\]
And,
B − A = {\[-\]i, i}
APPEARS IN
RELATED QUESTIONS
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{2, 3, 4} _____ {1, 2, 3, 4, 5}
{a, b} ⊄ {b, c, a}
{a} ⊂ {a. b, c}
{x : x is an even natural number less than 6} ⊂ {x : x is a natural number which divides 36}
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{3, 4} ⊂ A
Write down all the subsets of the following set:
{a}
Write the following as intervals: {x : x ∈ R, 0 ≤ x < 7}
Write the given intervals in set-builder form:
[6, 12]
Write the following interval in set-builder form:
[–23, 5)
Decide, among the following sets, which sets are subsets of one and another:
A = {x : x ∈ R and x satisfy x2 – 8x + 12 = 0},
B = {2, 4, 6}, C = {2, 4, 6, 8, …}, D = {6}.
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and B ∈ C, then A ∈ C
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊄ B and B ⊄ C, then A ⊄ C
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If x ∈ A and A ⊄ B, then x ∈ B
If A and B are two sets such that \[A \subset B\], then write B' − A' in terms of A and B.
If \[A = \left\{ \left( x, y \right) : y = e^x , x \in R \right\} and B = \left\{ \left( x, y \right) : y = e^{- x} , x \in R \right\}\]write\[A \cap B\]
If A and B are two sets such that \[n \left( A \right) = 20, n \left( B \right) = 25\]\text{ and } \[n \left( A \cup B \right) = 40\], then write \[n \left( A \cap B \right)\]
The number of subsets of a set containing n elements is
For any two sets A and B,\[A \cap \left( A \cup B \right) =\]
If A = {1, 3, 5, B} and B = {2, 4}, then
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{a, b, c} _____ {b, c, d}
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is a student of Class XI of your school} ____ {x : x student of your school}
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is a triangle in a plane} _____ {x : x is a rectangle in the plane}
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{1, 2, 5} ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{1, 2, 5} ∈ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
Φ ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{Φ} ⊂ A
Write down all the subsets of the following set:
{1, 2, 3}
Write the following interval in Set-Builder form:
(– 3, 0)
Given that N = {1, 2, 3, ..., 100}, then write the subset B of N, whose element are represented by x + 2, where x ∈ N.
State true or false for the following statement given below:
Let R and S be the sets defined as follows:
R = {x ∈ Z | x is divisible by 2}
S = {y ∈ Z | y is divisible by 3}
then R ∩ S = φ
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by 4n
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by `n/2`
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a + 1 = 6, a ∈ Y
Suppose A1, A2, ..., A30 are thirty sets each having 5 elements and B1, B2, ..., Bn are n sets each with 3 elements, let \[\bigcup\limits_{i=1}^{30} A_{i} = \bigcup\limits_{j=1}^{n} B_{j}\] = and each element of S belongs to exactly 10 of the Ai’s and exactly 9 of the B,’S. then n is equal to ______.