Advertisements
Advertisements
Question
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a + 1 = 6, a ∈ Y
Solution
Given: Y = {1, 2, 3,..., 10} where a represents any element of Y
To find: sets containing all numbers represented by a + 1 = 6, a ∈ Y
Y = {1, 2, 3, ..., 10}
a + 1 = 6
⇒ a = 5
⇒ 5 satisfies given condition
Therefore,
{a: a + 1 = 6, a ∈ Y }
= {5}
APPEARS IN
RELATED QUESTIONS
{a, e} ⊂ {x : x is a vowel in the English alphabet}
{a, b} ⊄ {b, c, a}
{1, 2, 3} ⊂ {1, 3, 5}
{a} ⊂ {a. b, c}
{a} ∈ (a, b, c)
{x : x is an even natural number less than 6} ⊂ {x : x is a natural number which divides 36}
How many elements has P(A), if A = Φ?
Write the following as intervals: {x: x ∈ R, –12 < x < –10}
Write the following as intervals: {x : x ∈ R, 3 ≤ x ≤ 4}
Write the given intervals in set-builder form:
[6, 12]
Write the following interval in set-builder form:
[–23, 5)
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and B ∈ C, then A ∈ C
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊄ B and B ⊄ C, then A ⊄ C
If A = {x ∈ C : x2 = 1} and B = {x ∈ C : x4 = 1}, then write A − B and B − A.
Let A and B be two sets having 4 and 7 elements respectively. Then write the maximum number of elements that \[A \cup B\] can have.
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is a student of Class XI of your school} ____ {x : x student of your school}
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is an even natural number} _____ {x : x is an integer}
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
1 ∈ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{1, 2, 5} ∈ A
Write down all the subsets of the following set:
Φ
Given that N = {1, 2, 3, ..., 100}, then write the subset A of N, whose element are odd numbers.
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by `n/2`
State True or False for the following statement.
The sets {1, 2, 3, 4} and {3, 4, 5, 6} are equal.
State True or False for the following statement.
Q ∪ Z = Q, where Q is the set of rational numbers and Z is the set of integers.