English

Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why? 1 ∈ A - Mathematics

Advertisements
Advertisements

Question

Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

1 ∈ A

Options

  • Incorrect

  • Correct

MCQ
True or False

Solution

This statement is correct.

Explanation:

1 is an element of set A.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Sets - Exercise 1.3 [Page 12]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 1 Sets
Exercise 1.3 | Q 3.04 | Page 12

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{2, 3, 4} _____ {1, 2, 3, 4, 5}


{a, b} ⊄ {b, c, a}


{1, 2, 3} ⊂ {1, 3, 5}


{a} ∈ (a, b, c)


{x : x is an even natural number less than 6} ⊂ {x : x is a natural number which divides 36}


Write the following as interval:

{x : x ∈ R, – 4 < x ≤ 6}


Write the given intervals in set-builder form:

[6, 12]


Write the following interval in set-builder form:

(6, 12]


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If x ∈ A and A ∈ B, then x ∈ B


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If A ⊂ B and B ∈ C, then A ∈ C


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If A ⊂ B and B ⊂ C, then A ⊂ C


Let A = {x : x ∈ Nx is a multiple of 3} and B = {x : x ∈ N and x is a multiple of 5}. Write \[A \cap B\] 


Let A and B be two sets having 4 and 7 elements respectively. Then write the maximum number of elements that \[A \cup B\] can have. 


The number of subsets of a set containing n elements is 


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{x : x is a student of Class XI of your school} ____ {x : x student of your school}


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{x : x is a circle in the plane} _____ {x : x is a circle in the same plane with radius 1 unit}


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{{3, 4}} ⊂ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{1, 2, 5} ∈ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{1, 2, 3} ⊂ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

Φ ∈ A


Write down all the subsets of the following set:

{a, b}


Write down all the subsets of the following set:

Φ


Write the following interval in Set-Builder form:

(– 3, 0)


Given that N = {1, 2, 3, ..., 100}, then write the subset B of N, whose element are represented by x + 2, where x ∈ N.


State true or false for the following statement given below:

Let R and S be the sets defined as follows:
R = {x ∈ Z | x is divisible by 2}
S = {y ∈ Z | y is divisible by 3}
then R ∩ S = φ


Given that N = {1, 2, 3, ... , 100}. Then write the subset of N whose elements are even numbers.


If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by 4n


If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by n – 1


If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.

a + 1 = 6, a ∈ Y


If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.

a is less than 6 and a ∈ Y


Suppose A1, A2, ..., A30 are thirty sets each having 5 elements and B1, B2, ..., Bn are n sets each with 3 elements, let \[\bigcup\limits_{i=1}^{30} A_{i} = \bigcup\limits_{j=1}^{n} B_{j}\] = and each element of S belongs to exactly 10 of the Ai’s and exactly 9 of the B,’S. then n is equal to ______.


If X = {8n – 7n – 1 | n ∈ N} and Y = {49n – 49 | n ∈ N}. Then ______.


State True or False for the following statement.

If A is any set, then A ⊂ A.


State True or False for the following statement.

Q ∪ Z = Q, where Q is the set of rational numbers and Z is the set of integers.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×