Advertisements
Advertisements
Question
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and B ⊂ C, then A ⊂ C
Options
True
False
Solution
This statement is True.
Explanation:
A ⊂ B ⇒ If x ∈ A and x ∈ B
But B ⊂ C ⇒ If x ∈ B then x ∈ C
∴ If x ∈ A then x ∈ A then x ∈ C ⇒ A ⊂ C
APPEARS IN
RELATED QUESTIONS
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{2, 3, 4} _____ {1, 2, 3, 4, 5}
{a, e} ⊂ {x : x is a vowel in the English alphabet}
{a} ⊂ {a. b, c}
{a} ∈ (a, b, c)
How many elements has P(A), if A = Φ?
Write the following as interval:
{x : x ∈ R, – 4 < x ≤ 6}
Write the following as intervals: {x: x ∈ R, –12 < x < –10}
Write the following as intervals: {x : x ∈ R, 0 ≤ x < 7}
Write the following as intervals: {x : x ∈ R, 3 ≤ x ≤ 4}
Decide, among the following sets, which sets are subsets of one and another:
A = {x : x ∈ R and x satisfy x2 – 8x + 12 = 0},
B = {2, 4, 6}, C = {2, 4, 6, 8, …}, D = {6}.
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and B ∈ C, then A ∈ C
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊄ B and B ⊄ C, then A ⊄ C
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If x ∈ A and A ⊄ B, then x ∈ B
If a set contains n elements, then write the number of elements in its power set.
Write the number of elements in the power set of null set.
If A = {x ∈ C : x2 = 1} and B = {x ∈ C : x4 = 1}, then write A − B and B − A.
If \[A = \left\{ \left( x, y \right) : y = \frac{1}{x}, 0 \neq x \in R \right\}\]and\[B = \left\{ \left( x, y \right) : y = - x, x \in R \right\}\] then write\[A \cap B\]
If A and B are two sets such that \[n \left( A \right) = 20, n \left( B \right) = 25\]\text{ and } \[n \left( A \cup B \right) = 40\], then write \[n \left( A \cap B \right)\]
If A = |1, 2, 3, 4, 5|, then the number of proper subsets of A is
In set-builder method the null set is represented by
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is a triangle in a plane} _____ {x : x is a rectangle in the plane}
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is an even natural number} _____ {x : x is an integer}
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{{3, 4}} ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
1 ∈ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{1, 2, 5} ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
Φ ∈ A
Write down all the subsets of the following set:
{a, b}
Write down all the subsets of the following set:
{1, 2, 3}
Write the following interval in Set-Builder form:
(– 3, 0)
Given that N = {1, 2, 3, ..., 100}, then write the subset B of N, whose element are represented by x + 2, where x ∈ N.
State true or false for the following statement given below:
Let R and S be the sets defined as follows:
R = {x ∈ Z | x is divisible by 2}
S = {y ∈ Z | y is divisible by 3}
then R ∩ S = φ
Given that N = {1, 2, 3, ... , 100}. Then write the subset of N whose elements are even numbers.
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by `n/2`
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by n – 1
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a + 1 = 6, a ∈ Y
State True or False for the following statement.
The sets {1, 2, 3, 4} and {3, 4, 5, 6} are equal.
State True or False for the following statement.
Q ∪ Z = Q, where Q is the set of rational numbers and Z is the set of integers.