Advertisements
Advertisements
Question
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by n – 1
Solution
Given that: X = {1, 2, 3}
{(n – 1) | n ∈ X} = {0, 1, 2}
APPEARS IN
RELATED QUESTIONS
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{3, 4} ⊂ A
How many elements has P(A), if A = Φ?
Write the given intervals in set-builder form:
(–3, 0)
Decide, among the following sets, which sets are subsets of one and another:
A = {x : x ∈ R and x satisfy x2 – 8x + 12 = 0},
B = {2, 4, 6}, C = {2, 4, 6, 8, …}, D = {6}.
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊄ B and B ⊄ C, then A ⊄ C
Let A and B be two sets having 3 and 6 elements respectively. Write the minimum number of elements that \[A \cup B\]
If A and B are two sets such that \[A \subset B\], then write B' − A' in terms of A and B.
If \[A = \left\{ \left( x, y \right) : y = \frac{1}{x}, 0 \neq x \in R \right\}\]and\[B = \left\{ \left( x, y \right) : y = - x, x \in R \right\}\] then write\[A \cap B\]
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is a circle in the plane} _____ {x : x is a circle in the same plane with radius 1 unit}
Let A = { 1, 2, { 3, 4}, 5 }. The following statement is correct or incorrect and why?
1 ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{1, 2, 5} ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{1, 2, 5} ∈ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{1, 2, 3} ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
Φ ∈ A
Write down all the subsets of the following set:
{1, 2, 3}
Write down all the subsets of the following set:
Φ
Given that N = {1, 2, 3, ..., 100}, then write the subset A of N, whose element are odd numbers.
Given that N = {1, 2, 3, ... , 100}. Then write the subset of N whose element are perfect square numbers.
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by 4n
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by `n/2`
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a ∈ Y but a2 ∉ Y
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a is less than 6 and a ∈ Y
If X = {8n – 7n – 1 | n ∈ N} and Y = {49n – 49 | n ∈ N}. Then ______.